Assessment of Fitts' Law for Quantifying Combined Rotational and Translational Movements

TitleAssessment of Fitts' Law for Quantifying Combined Rotational and Translational Movements
Publication TypeJournal Article
Year of Publication2010
AuthorsStoelen, M. F., and D. L. Akin
JournalHuman Factors: The Journal of the Human Factors and Ergonomics Society
Volume52
Start Page63
Issue1
Date Published02/2010
Abstract

Objective: To develop a model for human performance in combined translational and rotational movements based on Fitts’ law. Background: Fitts’ law has been successfully applied to translational movements in the past, providing generalization beyond a specific task as well as performance predictions. For movements involving both translations and rotations, no equivalent theory exists, making comparisons of input devices for these movements more ambiguous. Method: The study consisted of three experiments. In the first two, participants performed either pure translational or pure rotational movements of 1 degree of freedom. The third experiment involved the same movements combined. Results: On average, the performance times for combined movements were equal to the sum of the times for equivalent separate rotational and translational movements. A simple Fitts’ law equivalent for combined movements with a similar slope as the separate components was proposed. In addition, a significant degree of coordination of the combined movements was found. This had a strong bias toward a parallel execution in 12 out of 13 participants. Conclusion: Combined movements with rotations and translations of 1 degree of freedom can be approximated using a simple Fitts’ law equivalent. The rotational and translational components appear to be coordinated by the central nervous system to generate a parallel execution. Application: The results may help drive human interface designs and provide insights into the coordination of combined movements. Future extensions may be possible for the movements of higher degrees of freedom used in robot teleoperation and virtual reality applications.

Citation Key63