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Position-based admittance control of a robotic manipulator is a strategy that 

allows the manipulator to achieve compliance without sacrificing positional accuracy 

or modifying the underlying position controller. Desired manipulator stiffness and 

damping can be specified so that the tool tip behaves as a spring-dashpot system. This 

work characterizes the range of parameters that allows stable task execution in 

contact with an environment of varying stiffness for the Ranger dexterous 

manipulator. A classical stability analysis and simulation of the controller is 

conducted to predict its response in contact. The manipulator’s behavior is then 

observed during a series of simple tasks involving contact in one and two degrees of 

freedom. Suitable gains are chosen such that interaction forces at the tool tip are kept 

low. A compliant peg-in-hole insertion task is successfully accomplished. The work 

also outlines the implementation of an algorithm that removes unwanted gravity 

forces measured at the tool tip. 
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Chapter 1 

Introduction 

Background 

1.1.1 Robots in Space 

Since human presence is limited in both location and numbers, the vast 

majority of space exploration depends on robotic systems. While the cost associated 

with human space exploration may be prohibitive for financially limited countries, by 

developing more expendable robotic systems, more nations can afford to participate 

in the exploration of space at the same level.  

Robotic missions are now commonly proposed and carried out as precursors 

or replacements of their human extravehicular activity (EVA) equivalents. For 

example, a robotic mission to service the Hubble Space Telescope was planned and 

demonstrated in 2006, but was shelved in favor of another shuttle-based human 

servicing mission.  Nevertheless, robots are indispensable for efficient space 

operations and the presence of humans and robots are complimentary for most 

modern space missions [1]. For example, the Space Shuttle now uses its Remote 

Manipulator System (SRMS) as a camera boom for damage inspection after launch. 

Additionally, the crew of the International Space Station (ISS) routinely uses its 

Remote Manipulator System (SSRMS) in collaboration with SRMS for handing off 

and assembling newly delivered components from the Shuttle cargo bay.  
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Figure 1.1: Canadarm 2 (Canadian Space Agency) 

 

The collaboration between humans and robots will be essential for future 

interplanetary endeavors. With constant advances in robotic technology and 

autonomy, robots are now undertaking voyages to the farthest expanses of outer space 

that are presently unreachable by human astronauts. Autonomous ground, aerial and 

submersible vehicles provide an invaluable means of exploring the planets. Although 

less glamorous, robots that carry out the more mundane tasks of satellite or space 

station assembly and repair should not be overlooked. They accomplish tasks in 

microgravity with less risk and cost than EVA alone.  

Robots intended for space manipulation tasks must be carefully designed for 

precision and dexterity. Arguably the most critical factor in the design of a space 
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robot is its control architecture. It must be capable of stiff, accurate positioning, while 

at the same time remaining flexible enough so that servicing can be done with 

minimal loads imparted to the spacecraft. Large forces from contact can drive an 

otherwise stable controller into instability. Furthermore, they can push the target 

spacecraft away, unnecessarily excite modes of oscillation, and/or damage 

lightweight and sensitive space hardware [2]. Unfortunately for autonomous robots, 

these issues are complicated by the fact that the environment they interact with is 

largely uncharacterized. A space manipulator must be robust enough to perform 

accurately and delicately in a variety of unpredictable circumstances. Hence, one of 

the main objectives of space manipulator control is to ensure that the manipulator 

reacts stably to contact with an unknown environment, which is the principal goal of 

this research.  

Control of robotic manipulators for general assembly and positioning is a field 

that has been studied extensively over the last five decades and some of the latest 

findings are presented and discussed in later sections. Manipulation in space is a 

subset of that research. Space manipulators have much in common with their 

terrestrial counterparts. In particular, unconstrained motion, stability during contact 

transition and force-controller manipulation of the environment are some of the issues 

discussed thoroughly in this thesis. 

The Space Systems Laboratory (SSL) at the University of Maryland 

specializes in tele-operated manipulators for space applications and has a unique 

neutral buoyancy research facility (NBRF) for simulating conditions similar to 

microgravity.  The Ranger manipulator was developed as the SSL research test bed 
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for robotic manipulation in neutral buoyancy, and  for human-robot interaction in 

general. 

1.1.2 Motivation: The Ranger Manipulator  

Ranger is a spaceflight qualified dexterous robotic servicing system that was 

developed under funding from NASA as part of their Space Telerobotics Program. A 

free-flight version of Ranger was first designed in the 1993 as the Ranger Telerobotic 

Flight Experiment (RTFX). Its incarnation as the Ranger Neutral Buoyancy Vehicle 

(NBV) was made operational in 1995, intended for underwater use in a neutral 

buoyancy test facility such as the one at the University of Maryland. RTFX evolved 

into the fixed-base Ranger Telerobotic Shuttle Experiment (RTSX), developed for 

potential use on the Space Shuttle and International Space Station while attached to a 

Spacelab pallet.  The system is able to perform dexterous manipulation, body 

repositioning and stereo video viewing. Ultimately the termination of the NASA 

Space Telerobotics Program eliminated the potential for Ranger to be flown in space, 

but nevertheless it endured as an important research tool for the SSL and NASA. 

From 2004-2005 its use as a platform for servicing of the Hubble Space Telescope 

(HST) was considered. Although NASA selected MDA’s Dextre Special Purpose 

Dexterous Manipulator (SPDM) as the servicing robot, the Ranger Satellite Servicing 

System (RSSS) served as a valuable test robot for evaluating SPDM requirements and 

the feasibility of certain Hubble servicing tasks. Unfortunately NASA’s tentativeness 

led to the cancellation of a robotic servicing mission, citing concerns that it would not 

be ready in time. Though terminated early, the program succeeded in demonstrating 
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Ranger’s capabilities in the field, and its potential to carry out complex, delicate 

tasks. Notwithstanding, Ranger’s control system was still lacking in tactility, and its 

response to obstacle impact remained an issue to be addressed. This thesis undertakes 

this task by looking at the control scheme currently used on Ranger.  

 

Figure 1.2: Ranger NBV (top), RSSS (left), RTSX (right) 
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1.2 Ranger Position Control Overview 

1.2.2 Independent Joint Control 

Like most other industrial manipulators, the basis of the Ranger control 

scheme is independent joint control (IJC). Each joint is individually controlled using 

a P-D controller with its own tuned proportional and derivative gains. This very 

simple control strategy is convenient and stable at low velocities for manipulators 

with unknown dynamics parameters (i.e. link mass and inertia, motor friction, etc.).  

At the most fundamental level, an operator can change the position of each joint 

independently by inputting a desired rotation angle. The operator can also separately 

select the speed of rotation. Once the position and velocity errors are determined, a 

high-gain P-D compensator ensures that the desired values are quickly tracked and 

that errors resulting from un-modeled dynamics as well as external disturbances due 

to dynamic coupling effects from neighboring joints are rejected. 

 

Figure 1.3: Independent Joint Control 
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1.2.3 Resolved Rate Control 

The control scheme is different when position commands are given to the 

robot in Cartesian space.  Such is the case when the hand controllers are used, and for 

certain trajectory-following scenarios. The hand controls effectively send a rate input 

(i.e. move forward/back/up/down at a given speed) proportional to the movement of 

the joystick(s). This rate is then multiplied by the sample period to obtain a position 

command. When the controller receives a command to a given position, it formulates 

a Cartesian error that is then distributed to each joint via the robot’s inverse 

kinematics. The resulting joint error is then corrected using the IJC scheme discussed 

in the preceding section. 

 

Figure 1.4: Cartesian Error Resolution for Resolved Rate Control 

1.2.4 Limitations of Position Control 

The high-gain position servo employed on Ranger produces commendable results 

in tracking commanded position and disturbance rejection. Positional accuracy is not 

the major concern with Ranger’s control scheme. Ranger has demonstrated its ability 
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for positioning while performing mockup Hubble Space Telescope (HST) servicing 

tasks at NBRF in 2004. In addition to positioning its camera arm for optimal viewing, 

Ranger successfully accomplished insertion of several HST components in a 

simulated setting. While Ranger performs well at these end-effector positioning tasks, 

its performance is not optimal in contact situations. Generally Ranger’s position 

controller is sufficiently well damped to remain stable in contact at low speeds, where 

the contact forces are treated as disturbances and rejected. Thus, operators must be 

careful to make contact very slowly and must manually halt forward progress if a 

surface appears to be impinged. This limits Ranger’s capability to operate 

autonomously or to follow pre-planned trajectories in unknown environments. If 

contact with an obstacle is made and Ranger continues to be commanded forward, it 

will persistently force itself into the surface until its joint torques are saturated or, 

more catastrophically, until the obstacle is penetrated, deformed or crushed.  Both of 

these scenarios are clearly unacceptable. The former can result in damage to Ranger’s 

internals, while the latter can cause damage to the tool and manipulator in addition to 

the object that is impinged.           

1.3 Mitigating Contact Issues:  

1.3.2 Force and Compliance Control 

The aforementioned problem is common for most position-controlled 

manipulators and methods for circumventing it have been developed quite extensively 

throughout the past twenty years. With the exception of the first method, an implicit 
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requirement for each of these is the ability to measure the contact forces at the some 

location on the manipulator (typically at the tool tip). Thus, the presence of a 

force/torque sensor or other method of determining/measuring forces and moments at 

this location is implied.  

One manner of avoiding position control problems is to not use it, and instead 

control the force that is exerted on the environment. While force control may be more 

stable in contact, the ability to control position is lost. This compromise cannot be 

made on Ranger, whose tasks mainly involve positioning. Hybrid schemes have been 

proposed [3] although, as will be shown in Chapter 2, these are more suited toward 

structured assembly tasks where the directions of required position/force control are 

pre-defined.  

To achieve the desired behavior and have the manipulator react to external 

forces that it encounters, it has been suggested to impose a relationship between the 

sensed forces and the manipulator’s position or velocity. A useful implementation is 

compliance control or more specifically, impedance control, in which the 

force/position relationship imposed is that of a mass-spring damper system [4]. Thus, 

the manner in which the controller behaves depends on the selected values of the 

desired mass, stiffness and damping, or impedance, of the manipulator.  

Pure impedance control does track position in a manner that is suitable enough 

for the needs of Ranger. The scheme used for Ranger is Position-Based Impedance 

Control which modifies the robot’s desired trajectory according to the sensed force in 

order to achieve the specified impedance goal. This target impedance must be 

carefully selected so that the manipulator behaves the way that is intended. In 
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Ranger’s case, this translates to maintaining a soft, stable contact with the surface.  

1.3.3 Target Impedance Selection 

It will be shown in Chapter 2 that to ensure stability of an impedance 

controller, matching the robot’s impedance to that of the environment is paramount. 

Over the past 15 years there has been much research into how to best determine the 

appropriate gains to use for stable compliance. Offline strategies such as 

optimizations can be valuable for narrowing down a range of “initial guess” 

impedance parameters, which can then be fine-tuned [5]. One downside is that they 

require a dynamic manipulator model, which Ranger does not have (and even so, 

would be difficult to make accurate), in addition to knowledge of the environment as 

a basis on which to optimize the manipulator gains. In general, environment 

impedance is unknown and must be determined a priori, estimated, or adapted to. 

This will be discussed further in Chapter 2. Impedance gain bounds can also be found 

through the controller stability analysis, which will be presented in Chapter 4. It 

should be noted that stable impedance gains vary for the different phases of contact 

(free-space vs. sustained contact) and a controller that switches these gains based on 

detected forces is introduced in Chapter 2. It would be worthwhile to investigate the 

merits of such a scheme on Ranger. 

1.4 Research Goals 

Carignan and Smith previously conducted tests at the Space Systems Lab on 

suitable position-based impedance controllers for the Ranger dexterous manipulator 
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[6][7]. They investigated the effects of desired stiffness and damping, frequency, time 

delay, sample rates and bandwidth on the impedance error of the NASA Flight 

Telerobotic Servicer Demonstration Test Flight (DTF) and ADEPT controller for a 

shoulder joint. In addition, they determined controller stability boundaries for each of 

those parameters, but again only for one joint. They concluded that the ADEPT 

controller produced the lowest impedance error for all the listed factors and its utility 

should be evaluated on the full manipulator.  

Carignan then implemented the ADEPT controller on the NBV arm, and 

demonstrated operation in a spring-dashpot, accommodation and mass simulation 

mode [8]. While the results were satisfactory, they also found that for stable operation 

in contact, damping gains had to be raised to 5-10 times their free-space values. This 

resulted in sluggish responses and could have been attributed to the compensator loop 

rates being limited by a communications bottleneck between the impedance and joint 

servo controllers. Since then, no further attempts were made at incorporating this 

controller on the current incarnation of Ranger (RTSX). The goal of this research is 

thus to integrate Carignan’s original NBV controller into the existing framework and 

determine suitable gains for the stable execution of contact tasks. Improvements in 

processing as well as the use of corrective factors should lead to improved 

performance of this controller over its predecessor. Ranger’s stability in contact tasks 

will be analyzed and the use of gain switching will be investigated. The stability 

analysis will be extended to the two-joint case for the two DOFs that provide the bulk 

of the impedance motion, namely the shoulder and elbow pitch. This analysis should 

provide stability bounds for the impedance gains.  The culmination of these efforts 
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should be the inroads to a practical and reliable compliance controller for use with 

common manipulation tasks.  

 

Figure 1.5: Overall Control Implementation 

1.5 Outline of Thesis 

Chapter 2 will expand on the theoretical background of compliance control 

and explain the position-based admittance controller used on Ranger. Methods for 

improving the controller will also be introduced. Chapter 3 will detail the 

experimental apparatus used as well as describe the actual experiments used for 

testing the controllers and the procedure for gain characterization. The gravity 

compensation algorithm used for the controller is also explained. Chapter 4 will 

describe the model of the manipulator as well as the control block diagram. These 

will then be used to examine the stability of the controller and establish stability 
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bounds on the admittance gains. The controller model is also used to develop a 

contact simulation, which is presented in Chapter 5 along with the findings of the 

actual contact experiments, a detailed analysis and comparison of the results. Finally 

Chapter 6 will summarize those findings, expose their limitations, and explain how 

the work can be advanced through future research.  

 

 

 

 



 

14 

 

Chapter 2 

Theory 

2.1 Compliance Controllers 

The subject of compliance in manipulator control has been well studied over 

the last two decades. Numerous strategies and controllers have been proposed to 

address the issue [9], some of which are presented in this chapter. 

2.1.1 Natural and Artificial Constraints 

For the discussion to follow, it may be important to distinguish when position 

control alone would be appropriate and when force control would be necessary. This 

decision fundamentally depends on the constraints of the system [10]. Constraints can 

be set in terms of forces applied and velocities. In 3-space, if a robot is required or 

restricted to move in a certain direction, this is a velocity constraint that can occur in 

any translational or rotational direction, for a total of 6 velocity constraints. If a robot 

is required or limited to applying a given force (that force may also be zero if no force 

can be applied in that direction) then there is a force constraint along any translational 

or rotational axis, adding 6 more constraints for a total of 12 possible. In holonomic 

systems, such as the case with 6-DOF or greater manipulators, all 6 degrees of 

freedom are controllable and thus there should be 6 natural constraints. The 

remaining 6 constraints need to be imposed by the controller, and thus are termed 

artificial constraints. 
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An example here is helpful in illustrating their differences and implications in control. 

Consider the following “classic” peg-in-hole insertion task: 

 

Figure 2.1: Peg-in-hole example for natural/artificial constraints 

The coordinates of the compliance frame are denoted xc, yc, zc, and happen to 

correspond with the task frame in this case. From this cutaway view it is visible that 

the peg is constrained to move in the z-direction only. The task involves positioning 

the peg along the z-axis. The peg cannot move in the x-y plane because of the 

presence of a rigid surface there. In addition, the peg cannot rotate around the x and y-

axes due to the surrounding environment, nor can the constraining environment 

impose a force or moment in the z-direction. All these constraints due to implicit 

geometry are thus natural constraints. Forces could be applied in the x and y-

directions, but it’s best for assembly if those forces are zero. Similarly, there should 

be zero moments in these directions as well. If assembly required spinning of the part, 

a non-zero rotational velocity could be assigned in the z-direction, but for simplicity it 
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is deemed unnecessary. The only real requirement for assembly is that the peg moves 

in z with a pre-determined velocity, vd.  

Essentially all constraints that could be modified by the controller are 

artificial. Natural constraints, on the other hand, are invariable. A summary of the 

constraints for this example can thus be given as: 

Natural Constraints Artificial Constraints 

vx = 0  vz = vd  

vy = 0  z = 0  

x = 0  fx = 0  

y = 0  fy = 0  

fz = 0  nx = 0  

nz = 0  ny = 0  

Table 2.1: Natural/artificial constraints for peg-in-hole example 

The artificial constraints can be interpreted as a requirements list for the 

controller. In this case, the velocity in z is specified, so an appropriate position 

controller is necessary in this direction. Conversely, there is a condition that zero 

force be applied in the x and y-directions, which implies the use of force control in 

these directions. In Hybrid Control (discussed later), these orthogonal requirements 

become very relevant.   

2.1.2 Salisbury Stiffness Control/Implicit Force Control 

This was a sensor-less approach to compliant control first devised by Salisbury in 

1980 [11]. Essentially the controller is designed such that the robot’s joints behave 

like springs.  

 Kp J 1 xD x( ) JT Fenv =  (2.1) 

The controller converts a Cartesian position error into joint space via the inverse 
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Jacobian and then multiplies by a stiffness gain, as illustrated in Figure 2.2. This 

proportional controller compensates for the disturbance error introduced by the 

environmental contact force.    

 

Figure 2.2 Salisbury Stiffness Control (modified from [12]) 

Where Kp is a matrix of stiffness values corresponding to each joint and KE is 

the environmental stiffness. 

2.1.3 Force Control (Explicit) 

Developed by D.E Whitney in the late 1970s/early 1980s, explicit force 

control (Figure 2.3) essentially uses the same principle as position control, except 

force is tracked in lieu of a desired position. Thus, the operator commands a given 

force to be applied consistently throughout the manipulator’s motion, without regard 

to position necessarily.  

While conceptually practical for stable application of force to a surface, this 

control scheme is useless for precisely controlling the position of a tool tip in free 

space. Unless motion is completely constrained, there will always be a direction in 
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which no force needs to be applied and only positional control is necessary. 

Futhermore, An and Hollerbach [13] demonstrated that force control was unstable in 

contact with a rigid surface, Whitney [12] observed instability caused by digital 

sampling and other researchers, such as Raibert and Craig [3], observed the 

destabilizing effects of unmodeled nonlinearities such as friction, backlash and 

cogging in geared manipulators. 

 

Figure 2.3: Explicit Force Control 

2.1.4 Hybrid Position/Force Control 

To render force control more useful, Raibert and Craig developed a hybrid 

controller that couples force control with position control. The controller is organized 

according to the artificial constraints of the system, such that some DOFs are force-

controlled and the remaining ones are position-controlled. The two categories are 

distinguished using a task-dependant selection matrix, S, which is a diagonal matrix 

of ones and zeros, used as depicted in Figure 2.4.  
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Figure 2.4: Hybrid Position/Force Control (modified from [12]) 

While this method is an improvement over explicit force control, it relies on a 

presupposition of the robot’s path of motion. This method may be perfectly 

acceptable for a structured, repetitive assembly task. However, for a general-purpose 

manipulator that can encounter constraints in any direction at any time, it is not nearly 

versatile enough. Autonomous mode switching could improve performance with 

unknown environments, although this could be difficult to implement and delays in 

switching could introduce instabilities. Using a more robust position controller in 

conjunction with a more compliant controller (explained below) instead of the 

explicit force controller could also enhance performance.  

2.1.5 Stiffness Control 

The major pitfall of the previous scheme is that switching between strict 

position and force control can be problematic from a stability standpoint. One 
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solution is to control the relationship between force and position. The simplest such 

relationship is Hooke’s law:  

 F = kx  (2.2) 

 Kp J 1 xD x KF1Fenv( ) JT Fenv =  (2.3) 

Essentially this allows the manipulator endpoint to behave like a mass-spring 

system. Unlike Salisbury stiffness control, which makes no force measurements, this 

method uses force/torque readings as means of modifying the desired trajectory such 

that the arm’s overall stiffness is corrected. Thus, it could be said that stiffness control 

is equivalent to a proportional-gain force-feedback loop, as shown in Figure 2.5. This 

controller does nothing to control (dampen) high velocities that may arise from a high 

choice of stiffness.  

 

Figure 2.5 Stiffness Control (modified from [12]) 
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2.1.6 Damping Control 

Damping control is identical in concept and implementation to stiffness 

control, except that velocity is tracked instead of position and the resulting gain on 

the force feedback has the units of velocity/force (i.e. admittance). Hence, instead of 

enforcing Hooke’s law between input and output, the following admittance 

relationship is used: 

  F = b &x  (2.4) 

 
 
Kp J 1

&xD &x BF1Fenv( ) JT Fenv =  (2.5) 

Alternatively, this can be thought of as a derivative force-feedback loop, as 

shown in Figure 2.6. The drawback to pure damping control is the inability of the 

manipulator to return to its desired position.  

 

Figure 2.6: Damping Control (modified from [11]) 
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2.1.7 Impedance/Admittance Control 

Expanding on Salisbury’s idea of controlling the force/position relationship, in 

1985 Hogan proposed using mechanical impedance as a reference model [4]. The 

result was a combination of the Stiffness and Damping controllers described 

previously. Impedance control as illustrated below could also be described as a PD 

force feedback loop.  

 

Figure 2.7: Impedance Control (modified from [11]) 

The combination of systems can be more simply regarded as a relationship 

between effort and flow. The impedance, Z, relates the force, F, and velocity, V, via: 

 F(s) = Z(s)V (s)  (2.6)  

An inverse relationship can also be defined as: 

 V (s) = Z 1(s)F(s)  (2.7)  
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The term Z
-1

 is termed the admittance of the system, and as the equation 

suggests, is simply the inverse impedance.  

The impedance can be any kind of function, although for control 

implementation where environmental contact is made, it is most common to impose a 

mass-spring-dashpot relationship such that the environment force solicits a position 

response of the form: 

 
  
M &&x + B &x + K x = F  (2.8) 

Converting to the Laplace domain: 

 Z(s) =
F(s)

V (s)
= Ms + B +

K

s
 (2.9) 

To ensure good control performance during interaction with the environment, 

it is essential that the target impedance be chosen appropriately. In order to help 

determine which type of impedance operator is better suited for a given environment, 

Spong classified these impedances based on their behavior at low frequencies [14]. 

The system’s DC gain is given by: 

 kDC = lim
s 0

Z(s) = Z(0)  (2.10) 

By definition, an impedance is: 

a) Inertial, if and only if Z(0) = 0  

b) Resistive, if and only if Z(0) = B , for some constant 0 < B < , and 

c) Capacitive, if and only if Z(0) =  

We can draw the mechanical analogies for these classifications. An inertial 

system transfers all force into motion and thus can be modeled as a mass moving 
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along a frictionless surface. Similarly, a capacitive system stores energy and is 

analogous to a spring; whereas a resistive system dissipates energy with loses, which 

is indicative of viscous damping. 

 

Figure 2.8: Environmental impedance types (from [14]) 

Spong also determined an important condition when modeling systems as 

impedances. For optimal behavior during interaction, it is ideal if the manipulator is 

the dual of the environment. This duality principle states:  

1. Capacitive environments are to be force-controlled with non-capacitive 

manipulator impedances. 

2. Inertial environments are to be position-controlled with non-inertial 

manipulator impedances.  

3. Resistive environments are to be force-controlled with inertial manipulator 

impedances or position-controlled with capacitive manipulator impedances.  

Thus, if the manipulator makes contact with a highly capacitive environment 

(a rigid wall, for example) the manipulation should ideally be force-controlled with 

inertial and/or resistive impedance. Conversely, a manipulator moving in free space 

(highly inertial) should be position-controlled with capacitive and/or resistive 

impedance.  
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The impedance compensator replaces the position controller, and the position 

is modified in order to achieve the target impedance. The equation of the impedance 

compensator is: 

 
 
M &&x( ) + B &x &x0( ) + K x x0( ) = F  (2.11) 

The nominal trajectory, x0  is thus altered, and the required joint accelerations, 

a, are then calculated from the inverse dynamics of 
 
&&x  and fed to a computed-torque-

like controller of the form: 

 
 
= M q( ) &&q

d
a( ) + N  (2.12) 

Where M is an inertia matrix and N is the nonlinear model compensation. One 

drawback of this setup is that it only modifies commanded joint torques. Since it does 

nothing more to track position, it is prone to steady-state position errors. Of course 

there are many other sources of error that make the force control problem more 

complicated and difficult. Actuator/sensor non-collocation is a stability problem 

arising when a control loop is closed using a sensor and actuator placed at different 

points on a manipulator, which is commonly the case. On Ranger, the force sensor is 

placed at the tool tip, while position control is done at the joint level. This is currently 

an unavoidable problem that the controller must attempt to minimize. 

2.1.8 Position-Based Impedance Control 

Within impedance/admittance control there are many variations with subtle 

differences that could be discussed at great length [15][16]. Among them, there have 

been attempts to improve the poor position tracking of the above controller as well as 
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addressing the non-collocation problem. One solution, proposed by Maples and 

Becker [17] was to wrap a compliance controller around an existing position 

controller, shown below. 

 

Figure 2.9: Force servo with inner position loop  

It was only 2 years later that Lawrence more formally defined this type of 

position-based controller [18]. Using both commanded position and force readings, 

and the compensator then modifies the desired position to match an impedance goal.  

 
 
M &&xdes + B &xdes &xcom( ) + K xdes xcom( ) = Fext  (2.13) 

The modified desired position xdes is then fed to the previously existing 

position controller, which ensures decent position tracking of the modified signal. 

One advantage of this arrangement is that is doesn’t require modifications to 

the existing controller, the impedance compensator is simply added on.  

A favorable side effect is made visible by rearranging this admittance model 

in the Laplace domain. Force is transformed into position via 

 
Xdes (s)

Fext (s)
=

1

Ms2 + Bs + K
 (2.14) 
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This can be seen as a second-order low-pass filter on force and is a helpful 

property since the force signals from sensors are typically ridden with high-frequency 

noise [19]. 

Of course there are many other sources of error that need to be addressed 

when choosing a proper compensator for a manipulator, including, but not limited to: 

filtering, work piece dynamics, environment stiffness, actuator bandwidth, sensor 

dynamics, arm flexibility, impact forces, and the always-present drive-train backlash 

and friction. This is precisely why controller robustness is essential achieving optimal 

performance. The impedance controller selected for Ranger addresses some of these 

issues, but is not without problems, as is shown in subsequent chapters.  

2.1.9 Natural Admittance Control 

As an alternative to position-based impedance control, Wyatt Newman 

developed Natural Admittance Control (NAC) as a force control strategy 

[20][21][22]. NAC is based on the concept of passivity from nonlinear control theory: 

A passive system is stable as well as two interconnected passive systems. A robot in 

contact with the environment is an interconnected system. Typically, the environment 

is passive, thus if a robot can be controlled to behave passively, the combined system 

will behave in a stable fashion. Making a robot behave passively is no easy task. A 

prime requirement is a high-fidelity model of the robot dynamics because essentially, 

they must be nullified.   

In addition, the robot’s passive response to force and position input need to be 

identified. This is done by exciting each joint of the robot and characterizing its 
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response in position (velocity) and force. Their ratio V/F = Z
-1

 is then used to define 

an admittance for each joint. These admittances are then used in the calculation of the 

overall admittance of the robot that is required to make the system passive and thus 

ensure stability. A benefit of this method is good friction rejection because the 

passive motor response is calculated from the response with friction.  

The method was used for existing industrial manipulators with promising 

results [23]. However, they also demonstrated that there was only a limited range of 

manipulator impedances that could be achieved passively and this was due to the 

implicit design of the manipulator. For example, the manipulator’s link inertia was a 

limiting factor, which cannot be altered without a physical re-design of the 

manipulator. They also investigated the use of passively compliant end-effectors and 

sensors, which achieved stability goals, but at the expense of positional accuracy.     

While results are good, this method requires a complete overhaul of the 

manipulator and its controller in order to determine the joint impedances. 

Nevertheless, if other methods of impedance/admittance control do not result in 

favorable performance, and controller re-design is necessary, NAC might be a 

tempting option.  

2.2 Compliance Control on Ranger 

An admittance controller with position feedback [24] is well suited for Ranger 

because the implicit assumptions of high-gain position control and high gear ratios at 

the actuators are met [18]. In the current controller design, the admittance loop is 

wrapped around Ranger’s pre-existing high-gain position servo. This conveniently 
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eliminates the need for a complete re-design of the entire controller. The manipulator 

responds to environmental contact at the tool tip, adapting its impact force with the 

surface by modifying its desired position in order to match an operator-specified 

admittance goal. 

The controller used on Ranger is based on the one introduced in [17], seen in 

Figure 2.10. 

 

Figure 2.10: Compliance Control with inner position loop (from [17]) 

The implemented version of the admittance compensation is shown in figure 

2.11. Position, p, and orientation, q, commands that are normally sent to the position 

controller are instead first modified by the admittance loop. The actual tool position 

and orientation is subtracted to create a position error in the base frame (denoted as 

‘0’ in the figure. This error is then converted to the sensor, or compliance frame 

(denoted ‘C’ below), via a coordinate transformation. The compliance frame is 

situated at the base of the force/torque sensor (shown later) and for simplicity will 

have the same orientation as the tool frame. The position error is then multiplied by 

the desired stiffness, K, of the manipulator, producing a force/torque error term 

( f/ ). The measured force is also added to this error. The force error signal is then 

passed through the admittance compensator, C(s), which is composed of the desired 
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inertial and damping terms. This admittance converts the signal back to a 

position/orientation error, which is then transformed back to the base frame, as the 

adjusted tool position. This adjustment is then added to the commanded position to 

form the desired tool position. It is then converted to joint space via inverse 

kinematics and sent to the position control loop.  

 

Figure 2.11: Block Diagram of Ranger Admittance Controller 

 

Smith and Carignan (1994) showed that for a high inner loop bandwidth, the 

controller’s impedance can be approximated as: 

 Z(s)
C 1 s( )

s
+
K

s
 (2.15) 

The desired impedance is given by: 

 Zd s( ) = Mds + Bd +
Kd

s
 (2.16) 
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By equating equations 2.15 and 2.16: 

 K = Kd  (2.17) 

 C s( ) =
1

Mds + Bd

1

s
 (2.18) 

Since Ranger uses resolved rates as inputs, the 
1

s
 integrator term disappears, 

and the admittance compensator is simply: 

 C s( ) =
1

Mds + Bd
 (2.19) 

Equation 2.19 is effectively termed the second-order, or inertial compensator, 

and is one of Ranger’s impedance “modes”. It is useful for manual positioning of the 

manipulator endpoint, or if the damping term is removed, to simulate a free-floating 

mass. The discrete equivalent of (2.19) was found to be: 

 C z( ) =
1

bd

1 e aT

z e aT
 (2.20) 

 a =
bd
md

 (2.21) 

Where ‘T’ is the sample period (in seconds). 

In a case like the free-floating mass simulator where pure inertia is desired 

(i.e. bd = 0) the 1/bd term of (2.20) is problematic. In order to remedy this, (2.20) is 

expanded in a Taylor series and only order T terms are kept, resulting in: 

 C z( ) =
1

md

1

z e aT
 (2.22) 

The difference equation employed in the controller code is thus: 
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 C fout i +1[ ] = e aT C fout i[ ] +
T

md

C fin i[ ]  (2.23) 

For positioning applications, the inertial term may be undesirable as it makes 

the manipulator more difficult to stop, resulting in position errors. For such a case, the 

inertial term is removed and the result is a first-order or spring-dashpot compensator: 

  C s( ) =
1

Bd
 (2.24) 

The digital equivalent used in the controller algorithm is simply: 

 C z( ) =
1

Bd
 (2.25) 

The outputted adjustments from the compensator are then transformed back into the 

base frame: 

 

   

0
&p

Tadj
=

0q
C

C f
out

0
&

Tadj
=

0q
C

C

out

 (2.26)  

These velocity adjustments are then multiplied by the sample period and added to the 

integrated hand controlled commanded input  

 

   

0 p
Tdes

=
0 p

Tcom
+

0
&p

Tadj
T

0

Tdes
=

0

Tcom
+

0
&

Tadj
T

 (2.27) 

The new desired position and orientation are then finally sent to the position 

controller. 

Within the same framework, it is also possible to introduce a remote center of 

compliance that is not located at the base of the compliance frame, as in Figure 2.12. 

It can be specified anywhere relative to the tool frame and used to change the 
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magnitude and direction of the compliance.  

 

Figure 2.12: Controller with remote center of compliance 

Corrective factors introduced by Pelletier and Doyon [15] may be used to 

improve the performance of the controller. The corrective factor compensates for the 

lack of feedback for a particular term and its implementation is shown in Figure 2.13. 

In Ranger’s case the missing term is the velocity (acceleration feedback is not used on 

Ranger) and the corrective factor is cv, which ranges from 0 to 1. The difference 

between desired and actual velocity is multiplied by cv and added to the desired 

velocity. This reduces the error in not using velocity feedback for the calculation of 

the force error by a factor of (1- cv).  Theoretically, a corrective factor of 1 would 

eliminate the error. However, this introduces an infinite gain, which would corrupt a 

digital implementation of this controller. The general equation in Laplace domain for 

the first order admittance controller with the corrective factor is: 

 Xadj = Fe + kdX( )
1

bds
+ cv Xadj X( )  (2.28) 
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Re-arranging: 

 Xadj =
Fe + kdX( )
bds

+ cvXadj cvX  (2.29) 

 Xadj cvXadj =
Fe + kdX( )
sbd

cvX  (2.30) 

 Xadj 1 cv( ) =
Fe + kdX bdcvXs

sbd
 (2.31) 

Assuming the environment can be represented by a spring, 

 fe = kex  (2.32) 

 Xadj =
X ke + kd bdcvs( )

sbd 1 cv( )
 (2.33) 

Thus, we see that the corrective factor of 1 can lead to an infinite gain situation. 

 
Xadj

X
=
keq bdcvs

sbd 1 cv( )
 (2.34) 

Where: 

 keq = kd + ke  (2.35) 

In their research, Pelletier and Doyon opt for a corrective factor of 0.75. 

However, even for a lower corrective factor, the increased gain could drive the 

system to instability. The effect on stability will be investigated in Chapter 4.  
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Figure 2.13 Controller with corrective factor 

2.3 Impedance Selection 

It was mentioned in Section 2.1.7 that for stable impedance control in contact, 

the choice of robot impedance parameters is vital. Furthermore, the impedance gain 

selection depends on the environment it comes into contact with. Love and Book 

were the first to successfully demonstrate that contact stability is improved if 

estimates of the environment impedance are known [25]. The estimation algorithm 

they devised attempts to fit the measured force, F, and penetration depth, x, to the 

relation: 

 KxxBxMF ++= &&&  (2.36) 

A recursive least squares (RLS) regression is then used to determine the mass, 

stiffness and damping terms online. From these experiments, they also determined 

that it was essential to factor in the environment stiffness for finding suitable target 

impedance. “Suitable” natural frequency and damping gains were found to be: (for a 

critically damped system) 
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Melchiorri reinforced these findings by using other models that included 

coefficient of restitution and energy methods [26].  

By conducting a robust stability analysis, Surdilovic [27] determined a lower 

bound for the damping ratio of a Position-Based Impedance Controller: 

 t 0.5 1+ 2 1( )  (2.39)  

Where  is the ratio of environment stiffness to target stiffness. 

 
t

e

K

K
=  (2.40) 

It is important to note that these methods only provide a good starting point 

for gain estimation. Since a number of factors may influence performance, narrowing 

down the best gains involves tradeoffs. 

2.3.1 Impedance Error 

Once the desired impedances are known, the next question is whether the 

controller accurately delivers the desired impedance values. Smith characterized the 

impedance error in magnitude and phase and determined the effect of several factors 

on the error, plotting the percent error versus frequency [7].  

The impedance error was defined as the following, where Zdes is the desired 

impedance: 
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Z

des
= K

des
+ B

des
s  (2.42) 

 
  
Z

a
= K + C

1  (2.43) 

Desired stiffness, inner loop bandwidth, sample rates of the inner and outer loops, 

computational delays, and force feed-forward compensation were the factors Smith 

considered. In general, increasing the desired stiffness and damping had the effect of 

increasing the impedance error while increasing bandwidth and sample rate reduced 

the impedance error. Force feed-forward was also shown to minimize the error. While 

results varied for each factor, the trend that appeared throughout was that the 

impedance error increased with frequency, which is typical of a controller that is 

designed to work at steady state.  

2.3.2 Stability Analysis 

While determining gains that result in good performance is important, 

ensuring that these gains provide stable contact is essential. Lawrence analyzed 

stability for the DTF position-based impedance controller [18]. He noted that while 

admittance controllers are generally unable to provide very low impedances (high 

gains), they are still desirable when stiff joint position is required, as in Ranger’s 

case. He went on to analyze the effects of computational delays, discrete 

implementation and manipulator dynamics on the system’s performance. Stability 

boundaries were plotted for in terms of desired stiffness and damping for various 

manipulator bandwidths. As an extension of this work, Smith defined stability bounds 
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for the ADEPT controller (used on Ranger) for a single joint [7]. Time delays and the 

effect of increased bandwidth and increasing environment stiffness were considered. 

It was determined that force feed-forward, while beneficial to impedance error, 

requires higher damping for stability. Furthermore, for higher environment stiffness, 

higher damping is required for stability and likewise for increased time delay. 

Additionally, it was determined that increasing controller bandwidth reduced the 

stable region. Since her analysis was only performed for a single joint, the effect of 

arm configuration, inertia, on stability was not considered. In Chapter 4, the analysis 

is extended to the two-joint case.  The regions of stability will be useful for limiting 

the gain selection.   

2.3.3 Impedance Switching and Impact Control 

There are three main phases to tool contact with the environment: Approach, 

impact and sustained contact. Each of these phases has drastically different dynamic 

requirements. Having identical impedances for all three is inadequate, but nonetheless 

characteristic of most impedance controllers. Tradeoffs are thus made at each phase, 

possibly sacrificing positional accuracy for robust stability. A controller that 

continuously alters the robot’s impedance to meet these different needs would be 

ideal. However implementing an adaptive strategy based on position error and robot 

force telemetry, as proposed by Seraji and Colbaugh [28], would involve controller 

redesign. Guion [29] implemented an adaptive controller that compensated for 

frictional effects on a 2-link manipulator at the Space Systems Lab. While this 

manipulator used Ranger’s joints, the controller was designed independently to 
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incorporate adaptive control. A simpler, albeit less robust, approach is to break up the 

impact into distinct phases and determine suitable gains for each one. A state machine 

would then select the gains appropriate for the phase. This approach uses the existing 

impedance control framework, only retrofitting a switch statement.  

A sensible way to differentiate phases is through the measured impact force, 

as proposed by Gershon and Baruch [30] in their gain-switching methodology. If the 

measured force were zero (or very small) then the robot would be in a “free space” or 

“approach” mode. If the measured force were suddenly nonzero, or if the robot had 

knowledge of an imminent impact, it would switch to an “impact” or “transition” 

mode. Finally, if the contact force were sustained (for more than three sampling 

periods in the literature), it would convert to “contact” mode. Selecting only one set 

of gains for all three modes compromises the performance of the other two. For 

example, high damping makes for sluggish performance in free space, whereas large 

stiffness can be disastrous in rigid contact. 

Research [31] has shown that for free-space motion, high stiffness, low 

damping and practically zero inertia are recommended. In the transition mode, 

damping and inertia need be set just high enough to ensure no loss of contact (i.e. to 

not bounce). For contact with a rigid environment, low stiffness and high damping are 

required to minimize oscillation, and nonzero inertia can help maintain contact.  

Gershon and Baruch also recommended that in free-space mode, all (small) 

inertial force readings due to end-effector inertia be rejected until contact is made. 

This amounts to suggesting that the robot be position-controlled alone, which makes 

intuitive sense.  
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This approach has been claimed to be beneficial in the literature. However, the 

authors only present an outline of this method, and no formal experiments were ever 

conducted. Furthermore, the researchers also exposed the risk of instability during the 

abrupt gain transitions. The literature has dealt with this by ensuring that the damping 

remains above a certain stable threshold. 

Now that the various compliance control strategies have been introduced, the 

following chapter will describe the hardware that they are implemented on, and the 

strategies for testing the controller. 
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Chapter 3 

Implementation and Methodology 

3.1  The Ranger Manipulator System 

As was mentioned earlier, the impedance controller tests in this research were 

conducted on the Ranger serial link manipulator, shown in Figure 3.1.  When all its 

driven motions are taken into account, Ranger can be referred to as a 10 DOF 

manipulator: The first eight degrees of freedom stem from 8 revolute joints (R-P-R-P-

R-P-Y-R) while the remaining two are (fast and slow) torque-driven tool drives, for a 

total of ten. However, for this research the tool drives are not operational when the 

force/torque sensor is mounted at the tool tip, hence Ranger is considered an 8-DOF 

manipulator.  

 

Figure 3.1: Ranger Dexterous Manipulator 
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3.1.1 Manipulator Configuration 

Many “conventional” industrial manipulators limit themselves to 6 degree-of-

freedom arms. Despite the advantages of having additional degrees of freedom 

(namely, singularity and obstacle avoidance) redundant arms are seen predominantly 

in the research environment due to their added kinematic complexity. The effects and 

benefits of redundancy on the Ranger manipulator have been studied and strategies 

for resolving the associated mathematical complications have been implemented [32]. 

On Ranger, the extra degrees of freedom expand the manipulator’s dexterous 

workspace, allowing it to theoretically assume an infinite number of configurations 

for a given tool pose, improving obstacle avoidance capability. In turn, this permits 

the manipulator to move while the tool position remains fixed, referred to as a “self 

motion”. Redundancy also enables smooth planar motions in any direction within the 

dexterous workspace. This is beneficial for impedance control as is allows the 

manipulator to be compliant in directions tangent to its current path.  

Kinematics: 

To simplify redundancy management, Ranger is kinematically partitioned into 

a 4-DOF upper arm and a 4 axis-intersecting wrist. Ranger’s redundancy is resolved 

using the roll angle of the shoulder-elbow-wrist (SEW) plane, illustrated in Figure 

3.2. By introducing the SEW angle, the upper arm joint angles and consequently the 

wrist position can be calculated independently of the wrist joint angles. Furthermore, 

the self-motion of the SEW rotation is used to avoid the wrist singularity.  
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Figure 3.2: SEW roll angle for a 7-DOF manipulator (from [32]) 

 

Forward kinematics were straightforward to obtain, and based on previous 

research of SEW kinematics with a 7-DOF manipulator [33]. Using modified 

Denavit-Hartenberg (DH) notation and link frame assignments seen in Figure 3.3, 

Ranger’s forward kinematics are derived in [32]. Ranger’s D-H parameters are shown 

in Table 3.1. 

i i-1 ai-1 (rad) di (m) i 

1 0 0 0.1524 1 

2 /2 0 0 2 

3 - /2 0 0.5389 3 

4 /2 0 0 4 

5 - /2 0.1524 0.5117 5 

6 /4 0 0 6 

7 /2 0 0 7 

8 - /2 0 0 8 

Table 3.1: Ranger D-H Parameters 
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Figure 3.3: Link Frame Assignments for the Ranger 8 DOF Manipulator [34] 

 

Given the arm’s redundancy, Ranger’s inverse kinematics posed a much 

greater computational difficulty. Multiple, and sometimes infinite, solutions of joint 

angles exist for a given tool position. The problem was simplified in [32] by dividing 

the manipulator into 2 segments: the upper arm, consisting of joints 1-4, and the wrist 

joints 5-8. Different solving algorithms are employed for each. The upper arm 

solution uses the Extended Jacobian Method, where the Jacobian matrix is augmented 

by adding an additional controllable DOF, namely the SEW angle. The wrist solution 

involves the General Inverse Method, which finds a locally optimal solution based on 

joint velocities and constraints on specific wrist, tool and forearm orientations.  Extra 

singularities introduced by the skew-axis design of the wrist prevent the use of the 

Extended Jacobian method. A flow chart of the inverse kinematic solution is 

illustrated in Figure 3.4. 
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Figure 3.4: Inverse kinematics flowchart for Ranger (from [32]) 

 

 

Workspace and Singularities: 

Ranger has a reach of 135 cm when fully extended. As in all serial 

manipulators, boundary singularities exist in this configuration.  Moreover, 

precariously large joint torques are required to hold the arm in an outstretched 

position, further limiting the manipulator’s workspace. However, Ranger’s dual-

redundancy ensures that the dexterous workspace is almost as large as reachable 

workspace. By properly choosing the SEW angle and using the skew axis wrist 

design, Ranger can effectively avoid most singularities in its reachable workspace. A 

more detailed workspace description is currently not available because Ranger’s 

dexterous workspace has yet to be fully characterized.  



 

46 

 

Singularities are present in both the upper arm and wrist segments. By 

avoiding motion to the workspace boundary, external singularities can be 

circumvented. Conversely, internal singularities (i.e. singularities occurring within the 

useable workspace) are more difficult to analyze, and can be detrimental to the 

inverse kinematics computations by causing a loss of rank and invertibility in the 

Jacobian matrices [35][36]. It should be noted that by augmenting the degrees of 

freedom, more singularities are introduced. However, due to the supplementary 

configurations that are made possible, some singularities are also more easily 

avoided. 

Fortunately, upper arm singularities happen to lie outside the usual workspace. 

One such occurs when the arm is extended straight to the side, a configuration that is 

not commanded during normal operation. The only other singularity occurs when the 

shoulder pitch angle is zero, but this can be avoided by holding the shoulder roll angle 

fixed.  

Singularities in the wrist generally cause a loss of one degree of freedom, 

reducing the wrist’s redundancy. A special case exists where two degrees of freedom 

are lost and can only be recognized by uncharacteristically large commanded joint 

velocities. Ranger is designed to deal with these more severe singularities by halting 

once the joint velocities are above a specified threshold. At this point the operator 

would need to reverse and re-plan the motion to avoid the singularity.       

Achieving compliance near a singularity is especially difficult because the 

higher joint velocities or joint torques in those configurations cannot be stabilized. 

Thus, for the compliance tests to follow, we will choose configurations that lie within 
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the dexterous workspace, far from the reachable workspace boundary and its 

associated singularities.  

3.1.2 Technical Specifications 

Ranger is capable of operating in 1-G, underwater and in vacuum. In the 

interest of safety and time, the experiments carried out in this research were all 

conducted in an ambient 1-G laboratory environment. The SSL possesses a 

waterproof force/torque sensor but there is presently no means to attach it in a sealed 

manner. Designing a proper housing was outside the scope of this research, yet it is 

an important future consideration.   

Velocity and Force: 

Ranger is capable of a maximum linear tool tip velocity of 1 m/s (40 in/s). In 

1-G it can exert a maximum lift of 133 N at full extension and 267 N in a “working” 

configuration. In terms of compliance control, this establishes a limit at which the 

manipulator motor torques will saturate and no longer be able to push against a 

surface. However, to prevent arm and actuator damage, this scenario will be avoided.    

Accuracy: 

Static and dynamic tests (conducted in compliance with ANSI/RIA R15.05-1-

1990 and ANSI/RIA R15.05-2-1990 standards, respectively) have been previously 

conducted to determine the positional performance of the manipulator [37][38]. 

Results indicate a static accuracy of approximately 20 mm, static repeatability of 

about 0.5 mm and a static compliance of at worst 0.4 mm/kg applied load at 

maximum reach. In terms of control, the static compliance above corresponds to a 
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manipulator stiffness of roughly 25000 N/m. However, it is worth mentioning that 

25000 N/m is a lower bound and valid only in the outstretched position, at which the 

manipulator is most flexible. In dynamic path-following tests, Ranger demonstrated 

an average Cartesian accuracy of 1 mm with a repeatability of 1 mm, and a Cartesian 

cornering radius of 10 mm.  

Controller: 

The LPU controls the inner loop servo, which runs at 750 Hz, while the 

impedance and overall control loop run in the DMU at 125 Hz. The inner loop 

position is P-D controlled and receives joint angle commands generated from the 

DMU directly (in joint-by-joint mode) or indirectly through the inverse kinematics of 

a Cartesian position (in resolved rate mode). The controller and manipulator model 

will be addressed further in Chapter 4.  

3.1.3 Force/Torque Sensor Specifications 

The force/torque sensor used is a JR3 100M40A, shown in Figure 3.5. It is 

rated for a maximum load of 800 N in the “z” direction (normal to the sensor face), 

and 400 N in the “x” and “y” directions. The maximum torque rating is 40 N-m in all 

directions. Force is digitized to 15 bits in each direction (14 bits magnitude and 1 for 

sign), producing a resolution of 24.4 mN laterally (“x/y”) and 48.8 mN axially (“z”).  

Force amplification and conversion is done onboard the sensor. Output is then sent to 

a JR3 PCI driver card for signal processing.  The sensor and card provide decoupled 

and digitally filtered data at 8kHz per channel.  
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Figure 3.5: JR3 Force/Torque Sensor 

3.1.4 Force/Torque Sensor Mounting and Alignment 

The sensor is attached to the wrist with an adapter plate and cone, as shown in 

Figure 3.6. This cone was originally bolted directly to the wrist, but an adapter was 

made so that it could be fitted with the interchangeable end-effector mechanism 

(IEEM), and more easily switched out. 

For the purposes of the controller, the sensor frame is assumed to be the same 

as the tool frame, only translated axially by the distance between the tool tip and the 

exposed end of the force sensor. However, while the outward (z) directions are 

aligned in both frames, the x and y direction might be arbitrarily offset. This occurs 
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because Ranger’s hand roll frame (8) does not have an absolute reference position 

relative to the tool frame (S). Whenever Ranger’s controller is re-started, the eighth 

joint, which controls the roll of the sensor, is automatically zeroed. There is no sensor 

to determine the tool offset. Thus, upon robot start-up, the sensor axes must be 

carefully aligned with the tool frame axes in joint-by-joint mode, and then zeroed so 

the sensor and tool frame are aligned. While this procedure is certainly inconvenient, 

it only need be done once, as long as the operator remembers to return the robots 

joints to the zero position before the control power is turned off.  

The sensor is mounted external to the robot, so that forces are transmitted 

directly to it, by way of a faceplate, which may have a “finger”-like tool attached to 

it. Ideally, a useful tool (like a gripper or bolting tool) would be attached, but for the 

purposes of testing the controller, more expendable end-effectors are used. These are 

discussed in Section 3.3.1. 

 

Figure 3.6: Force/Torque Sensor Mounted to Wrist via IEEM.  
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3.2  Gravity Compensation 

Testing a force controller in 1-G carries with it the extra burden of gravity. 

The sensor is mounted to the attachment plate in such a manner that the forces are 

read at the end of the sensor that is closer to the wrist. Thus, under gravitational 

loading, the sensor records the force of its own weight, as well as the induced 

moment it causes. Additionally, it will also measure the weight/moment due to any 

attachment or end effector at the free end. This is illustrated in Figure 3.6. For an 

admittance controller that relies on external forces to adjust its position, these extra 

forces contaminate the readings and must be removed. If not, the arm will move in 

the direction in which gravity pulls the end effector.  If the mass properties of the 

end-effector are known, and the orientation of the gravity vector can be found via 

frame transformations, the forces due to gravity can be calculated and removed. 

However, Ranger is a robot that uses multiple end effectors, some of which grasp 

payloads of potentially unknown mass characteristics, thus it is difficult to 

characterize what the compensating force should be. One remedy is to re-zero the 

force sensor whenever the end effector changes. This works as long as the arm 

maintains its orientation. If the orientation changes slightly, gravity forces will re-

appear. In order to avoid this hassle, a procedure is used to automatically find the 

proper gravity compensation. 
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Figure 3.7: Gravity Forces Acting on End-Effector 

 

The external location of the sensor facilitates the gravity compensation. As 

shown in Figure 3.6, if the mass and center of mass of the end effector are known, 

finding the compensating forces is straightforward. Assuming the sensor and tool 

frames are aligned, the compensating force, F, in the sensor frame, s, is given as: 

 
  

s
F

comp
= m

ee

s
g  (3.1) 

Where 
 
s
g  is the force of gravity expressed in the sensor frame. This can be obtained 

from the world frame (or in Ranger’s case the Shuttle frame) by a matrix 

transformation. 
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s
g =

s
R

8

8
R

0

0
R

shuttle

shuttle
g  (3.2) 

The world frame gravity vector is of course given by 

  
  

shuttle
g = 0 0 9.81  (3.3) 

The matrix transformations are the standard ones used on Ranger obtained from the 

D-H parameters. 

Once the gravity force is obtained, the compensating moment is simply 

calculated as: 

 
  

s
M

comp
= p

cmee
m

ee

s
g  (3.4) 

Where 
 
p

cmee
 is the vector from the origin of the sensor frame to the center of mass of 

the end-effector. 

3.2.1 Mass Estimator Algorithm 

Of course, in order to determine these compensating forces, the mass and 

center of mass of the end effector must be determined. These may be determined 

experimentally, or numerically with CAD software. However, it would be convenient 

if the robot could determine this automatically. By having a force sensor, the robot 

already possesses a way to determine mass, and by using arm telemetry, and moment 

readings it should be able to determine the center of mass as well. Consider the 

simple planar example, for a uniform symmetrical mass, shown in Figure 3.7 below.  
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Figure 3.8: Planar Mass Estimation 

 

If the manipulator is pointed upward, then the weight of the end-effector is 

recorded, and its mass can be extracted simply as: 

 
 

m
ee
=

F
sensor

g
 (3.5) 

If the manipulator is then rotated 90 degrees, and the gravitational torque is 

recorded, since the mass is now known, the center of mass can be calculated as: 

 
 

p
cmee

=
M

sensor

m
ee

g
 (3.6) 

For an arbitrary, asymmetric mass, the procedure is analogous, but must be extended 
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to the third dimension. The values of mee and pcmee can be determined as follows:  

1. Move the arm to at least 2 different positions (in a different orientation)  

2. Register and store readings of the force and torque at each position 

3. Perform a least-squares computation on the readings to determine the 

minimum mass and center of mass. 

1. Arm Motion: 

The arm motion is accomplished by running a trajectory to a given set of joint 

angles. Multiple waypoints are necessary due to the method of solution, which will be 

discussed later. More waypoints increase the accuracy of the estimate. The algorithm 

run on Ranger uses 4 points because this seems to be the point of diminishing returns. 

Orthogonal positions are chosen to reduce the redundancy of the data. Namely, the 

orientations chosen are with the tool tip pointed up, pointed forward, pointed down 

and pointed at 45 degrees. These are shown below for Ranger. 

2. Storing readings from the force/torque sensor: 

At each arm position, the trajectory pauses for five seconds to read forces and 

torques. Measurements are stored in the matrices YF (forces) and YN (moments), and 

constructed as follows: 

 

 

YF =

FS1
FS2
M

FSp

 and YN =

NS1

NS2

M

NSp

,  FSp =

fXp
fYp
fZp

 and NSp =

nXp
nYp
nZp

 (3.7) 

Where FSp is the force reading at position, p, and is the moment reading at 

position, p. 
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3. Calculation of mee and pcmee: 

We express the gravity vector in the tool frame, at a given pose p, as: 

 gTp =

gTx
gTy
gTz

 (3.8) 

The force due to gravity is then expressed as:  

 FSp = mgTp  (3.9)  

Similarly, the moment due to gravity can be expressed as: 

 NSp = pcmee mgTp = mGTppCMEE  (3.10) 

where GTp is the cross-product matrix for gTp , given by: 

 GTp =

0 gTz gTy
gTz 0 gTx
gTy gTx 0

 (3.11) 

pcmee is the position vector of the center of mass, given as: pcmee =

xc
yc
zc
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Figure 3.9: Arm Positions for Mass Estimation 
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Alternatively, this can be written as:  

 NSp = m

0 gTpz gTpy
gTpz 0 gTpx
gTpy gTpx 0

xc
yc
zc

 (3.12) 

Note that at this juncture, it is impossible to solve for xc, yc and zc.  The 

solution to the matrix equation would be of the form pCMEE = GTp
1NSp( )

1

m
.  

However, GTp  is a 3 3 skew-symmetric matrix, and therefore non-invertible because 

all skew-symmetric matrices of odd dimension are singular.  

More than one set of readings must therefore be taken, and the approach to 

solution is slightly more intricate. As each subsequent reading is taken, the matrices 

are “stacked” to generate: 

 

 

YF =

FS1
FS2
M

FSp

= m

gT1x
gT1y
gT1z
gT 2x
gT 2y
gT 2z
M

gTpx
gTpy
gTpz

 (3.13) 
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YN =

NS1

NS2

M

NSp

= m

0 gT1z gT1y
gT1z 0 gT1x
gT1y gT1x 0

0 gT 2z gT 2y
gT 2z 0 gT 2x
gT 2y gT 2x 0

M O M

0 gTpz gTpy
gTpz 0 gTpx
gTpy gTpx 0

xc
yc
zc

 (3.14) 

 

Equation 3.12 can easily be solved for m using a left pseudo-inverse. The 

pseudo-inverse is used to obtain a least squares solution of a non-square matrix 

equation. When the set of equations to be solved is over-determined (i.e. has more 

equations than unknowns) the left pseudo-inverse is used.   

For a general equation of the form:  

 Y =  (3.15) 

Where  is a column vector of length n,  is a non-square matrix of dimension m  

n and Y is a column vector of length m.  is solved using: 

 =
T( )

1 TY =
†Y  (3.16) 

Where †
=

T( )
1 T  is the left pseudo-inverse of . When solving for m, 

designate: 
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YF =

FS1
FS2
M

FSp

, F =

gT1x
gT1y
gT1z
gT 2x
gT 2y
gT 2z
M

gTpx
gTpy
gTpz

, F = m  (3.17) 

In the case of pcmee these become: 

 

 

YN =

NS1

NS2

M

NSp

, N =

0 mgT1z mgT1y
mgT1z 0 mgT1x
mgT1y mgT1x 0

0 mgT 2z mgT 2y
mgT 2z 0 mgT 2x
mgT 2y mgT 2x 0

M O M

0 mgTpz mgTpy
mgTpz 0 mgTpx
mgTpy mgTpx 0

, N =

xc
yc
zc

 (3.18) 

The force psudo-inverse equation is solved first, consequently determining m. 

Substituting m into N , N  is solved, and pcmee is obtained. 

3.2.2 Testing Gravity compensation 

The gravity compensation was tested to determine if the force of gravity was 

effectively being removed by verifying that the net sensed force at several arm 

configurations was zero. The end-effector then moved to 4 distinct positions, similar 

to those shown in Figure 3.9: Pointing up, pointing down, pointing sideways, pointing 
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45 degrees. The force/torque error was recorded as the deviation from zero. Forces 

and moments were recorded at each waypoint, for 10 runs. 

 

 

Figure 3.10: Force/Torque Sensor Attached to Wrist 

Tests were run with 2 loads: The actual sensor, and a 1kg cylindrical load 

shown in Figure 3.11. Results are tabulated in Appendix A.  

For both loads, with gravity compensation applied, the forces due to gravity 

were within the range of ±2 N. This corresponds to less than 23% of the expected 

force reading for the lighter load and less than 13% of the expected force reading for 

the heavier load. This residual force was due to small vibrations and sensor noise, as 

well as inaccuracies stemming from sensor preloading. Filtering this force reading 

with a deadband can eliminate the error, without much consequence on the controller, 

because contact forces in the 1-2 N range are relatively small.  
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Torque compensation for the lighter load was relatively accurate, as less than 

8% of the gravity torque remained.  The heavier load had less than 15% of the 

expected gravity load leftover. Although this procedure does not eliminate 100% of 

the gravitational forces, these results validate its use because the net forces that 

remained have negligible effect on the admittance controller.  

 

Figure 3.11: 1 kg Cylindrical Mass Attached to FTS 

3.3  Testing Impedance Control 

Most structures that Ranger interacts with in assembly tasks are rigid. As 

proposed by Anderson and Spong, for minimal interaction force, the manipulator 
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stiffness will have to be specified as low as possible. The following experiments will 

determine how low the stiffness can be specified and how much damping is required 

for stable contact at that stiffness. Although the admittance controller will ultimately 

have to demonstrate stable behavior in rigid contact, the controller is initially tested in 

contact with a compliant surface, to ascertain whether the leap to rigid contact can be 

made safely.  

3.3.1 Apparatus 

Contact will be made against a flat, vertical surface such that the motion of the 

manipulator is in the horizontal plane. The flat surface will consist of a metal plate for 

rigid contact, and a plastic springboard for compliant contact. Both the plate and 

springboard are affixed to an 80/20 aluminum frame that is clamped down to the 

manipulator pallet floor support structure (PFSS). 

Springboard Design 

The springboard consists of two rectangular plastic boards sandwiching two 

springs. The board’s travel is kept linear by means of concentric cylinders around 

which the springs are placed.  The principle is similar to an automotive shock 

absorber, minus the damper, although there is dry friction between the cylinders that 

acts as a mild damper.  
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Figure 3.12: Springboard Design Drawing 

 

 

Figure 3.13: Springboard Mounted on 80/20 Frame Clamped to PFSS 
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The springs used have a stiffness of 3.26 kN/m. Combining two in parallel 

doubles the stiffness, yielding a spring constant of 7.52 kN/m. 

End Effectors for Contact Tests 

Ranger will make contact with the surfaces using three different attachments. 

The first is the plate attached to the end of the force sensor, shown in all figures to 

this point. The second is an aluminum finger/poker with a plastic tip. The third is a 

finger with roller bearing tip, to reduce the effect of friction in a sliding motion. The 

last two are bolted to the first through an adapter plate, as illustrated in Figure 3.14. 

 

Figure 3.14: End Effector Assembly Drawing 
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3.3.2 Procedure 

As mentioned earlier, the contact motion takes place in a horizontal plane. 

Two types of contact will be made. The first consists of a single linear motion 

perpendicular to the contact plane. This will be denoted as the “1-DOF” experiment. 

The next experiment adds motion parallel to the contact plane, and is denoted as “2-

DOF”. The rates of the motions can be selected in the Ranger control GUI.  

 

Figure 3.15 Ranger Approaching Springboard 

1-DOF Experiment 

The 1-DOF experiment is first conducted with the springboard. The lowest 

stiffness is used, namely 7.5 kN/m, which requires 75 N to compress 1 cm. The 
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manipulator is positioned to that the force sensor is parallel to the springboard.  A 

Cartesian rate is specified in the z-direction of the tool frame (axially outward) until 

the manipulator contacts the springboard. A rate is then specified in the opposite 

direction to withdraw from contact. High stiffness (1000 N/m) and damping (1000 

Ns/m) are specified in the lateral and rotational directions, as compliance is not tested 

in these directions. High stiffness and damping are also initially set in the axial 

direction. The stiffness is then decreased until instability occurs. The damping is then 

raised by 100 Ns/m and the stiffness again decreased until instability. The process is 

continued until no amount of damping will stabilize the chosen stiffness, or the 

chosen stiffness is zero. The process is then repeated for rigid contact. 

 

Figure 3.16: Illustration of 1-DOF Experiment 

2-DOF Experiment  

The 2-DOF test adds motion in the lateral direction. For this experiment the 

“finger” end-effector is used. The axial stiffness will be set to the lowest, stable 
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stiffness determined from the 1-DOF experiments. Once contact is made, the 

manipulator will be commanded to move to the right at a given rate. Lateral stiffness 

will then be adjusted using the same procedure outlined for the 1-DOF case, and 

checked for stability. The process will be repeated with both the plastic tipped and 

roller-bearing-tipped end-effector to determine the influence of friction on stability.  

 

Figure 3.17: Illustration of 2-DOF Experiment 

Peg-in-Hole Experiment 

After the 2-DOF experiments are complete, the range of stiffness and damping 

will be well characterized for moving contact. The most compliant of those is then 

selected for an attempted peg-in-hole insertion. The motion will be identical to the 2-

DOF case, except there will be a hole interrupting the motion, through which the 

finger should pass. Rotational compliance will then be added and compared to the 

case without. 
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Figure 3.18: Illustration of Peg-in-Hole Experiment 

3.3.3 Switching Control 

Preliminary tests into a switching controller can be done by repeating the 1-

DOF compliant test, but manually switching the gains when contact is made. High 

manipulator stiffness is selected first, and when contact is made, the gains are 

switched to a low axial stiffness. It will be determined whether this abrupt change 

destabilizes the controller. A rigid manipulator should compress the springboard and 

maintain position, but when the stiffness is reduced, the manipulator should spring 

back in response. 

Before compliance testing can begin, it would be helpful if the controller 

could be assessed for stability analytically. This could narrow down the search for 

stable gains by providing theoretical bounds on the stable region.  
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Chapter 4 

Stability Analysis 

Smith investigated the stability of the ADEPT controller for a single joint and 

determined relations between stiffness and damping that resulted in a stable 

impedance controller. While this analysis certainly gives useful insight into the range 

of stable gains for this controller, it was performed for an arbitrary link attached to the 

shoulder motor. Hence, it was unrepresentative of Ranger’s actual configuration and 

factors such as the length and mass of its actual links were not considered.  

In the interest of making the analysis more applicable, this chapter extends the 

stability analysis initiated by Smith to the 2-link case. Although this remains a 

simplified version of the 8-DOF arm, it captures the major inertial changes in the arm 

as viewed from the end-effector due to changes in arm configuration. The effect of 

changing inertia due to arm configuration will be studied. 

4.1 Controller Block Diagram 

The block diagram for the arm’s controller was shown in Chapter 2. The one 

considered for the stability analysis is slightly different. It has been linearized to 

allow tools from linear control theory to be applied. This construction, shown in 

Figure 4.1, was the same generalized diagram used by Smith in her research. 

However, while Smith chose to further simplify it to the SISO model for 1 joint 

(Figure 4.2), the analysis presented in this chapter expands the SISO model further 

and ultimately examines a MIMO implementation.  
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Figure 4.1: Generalized Controller with Simplified Inner Position Servo Loop 

 

 

Figure 4.2: Simplified One-DOF Controller 

The main difference between the SISO and MIMO implementations is the 

conversion from joint space to Cartesian space and vice-versa. This is accomplished 

via the Jacobian, J, or its inverse. Cartesian forces are also translated to joint torques 

using the Jacobian transpose. In all other aspects, the controllers are identical apart 

from the SISO model using scalar transfer functions while the MIMO version 

employs their matrix analogues. The following section explains how their elements 

are modeled. 
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4.2 Modeling elements of the controller 

As discussed in Chapter 2, both controllers contain the outer admittance loop 

wrapped around the inner joint position loop. As discussed in Chapter 2, the outer 

loop feeds back the external torque due to the environment stiffness, Kenv, and is 

where the manipulator stiffness, K, is defined. The admittance compensator, C(s) 

regulates the manipulator inertia and damping. All of these parameters will be 

examined for their impact on stability. The inner loop is governs the joint motors, 

represented by the plant model, Gp(s), using a proportional-derivative (P-D) 

controller, D(s). In order to avoid redundancy in the following sections, the controller 

components will be described in their MIMO configuration, where the SISO model is 

merely a subset of this.  

4.2.1 2-DOF Arm Model 

The MIMO model considered is a 2-link manipulator model based on the 

dimensions of the upper and lower arm of Ranger, shown in Figures 4.3 and 4.4. The 

upper arm consists of the shoulder roll joint and upper arm link, while the lower arm 

is comprised of the elbow pitch joint, the forearm link and the wrist. For the purposes 

of the stability analysis, the arm dimensions as well as arm component masses and 

center of masses were obtained from the Arm Dimension and Weight Measures Test 

Report [39]. The underlying assumption behind this simplified analysis is that the arm 

is comprised of uniform links with a lumped mass at the center of gravity of each 

link, as dictated by the test report. Furthermore, the arm motion is restrained to the 

planar motion illustrated in Figure 4.4. This assumption is not without justification, as 
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the bulk positioning motion of the arm is generally accomplished though rotation of 

the shoulder roll and elbow pitch joints. 
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Figure 4.3 Ranger Simple 2-DOF Model 
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Figure 4.4 Ranger 2-DOF Dimensions (photo from graphical simulation) 

4.2.2 Link Inertia 

To calculate the link moment of inertia, the links are modeled as pendulums. 

A simple lumped mass model is used: 

 
  
J

L
= mL

2  (4.1) 

Where L is the effective length from the joint rotation center to the location of the 

lumped mass center. Referring to the 2-link manipulator model shown in Figure 4.4, 

L1 is denoted as the distance from the shoulder to the mass center of the first link. LL1 
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is the length of the first link, from shoulder to elbow. L2 is the distance from the 

elbow joint to the mass center of the second link. L2eq is the distance to the equivalent 

mass center of the second link that includes the mass of the wrist and payload. This is 

determined as a mass-weighted equivalent length: 

 

  

L
2eq

=
m

2
L

2
+ m

3
L

3
+ m

p
L

p

m
2
+ m

3
+ m

p

 (4.2) 

Where m3 is the mass of the third link (i.e. the wrist) L3 is the distance between the 

elbow joint and the wrist mass center, mp is the payload mass and Lp is the distance 

between the elbow joint and the tool tip (where the payload is assumed to be located). 

The known values from the aforementioned test report are presented in table 4.1. 

Link Length Value (m) Link Masses Value (kg) 

L1 0.057 m1 22.68 

LL1 0.54 m2 21.90 

L2 0.076 m3 21.90 

LL2 0.677 mp 0-15 

L3 0.446   

Lp 0.677   

Table 4.1 Link Length and Mass Parameters 

 L21 is then denoted as the effective distance between the shoulder joint and 

the equivalent mass center of the second link. An expression is found using the law of 

cosines: 

 
  
L

21
= L

L1

2
+ L

2eq

2
+ 2L

L1
L

2eq
cos

2
 (4.3) 
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Those are determined as follows: 

  
  
J

L1
= m

1
L

1
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2  (4.4) 
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2eq
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Where: 

 
  
m

2eq
= m

2
+ m

3
+ m

p
 (4.6) 

Thus, the moment of inertia at the first joint thus depends on both the first and second 

link, while the moment of inertia at the second joint only depends of the second link. 

Effectively, the mass of the shoulder roll joint and the elbow roll joint are lumped into 

the upper arm link mass. The mass of the forearm link is lumped from the mass of the 

elbow pitch joint and the wrist mass, as well as any payload that is attached to the 

wrist.  

It is important to note here that the inertia of the arm varies with two 

parameters: The payload mass, mp, and the arm configuration, dictated by 2. Since 

the arm inertia is a predominant factor in the plant model, the effect of variable inertia 

due to configuration and payload mass on arm stability will be analyzed. Increasing 

the mass of the payload will move the center of mass of the second link away from 

joint 2. Increasing 2 brings the second link mass center closer to the shoulder and 

thus reduces the effective inertia at that joint, possibly having a stabilizing effect. 

4.2.3 Plant Model 

Since Ranger’s inner loop position servo is an independent joint controller, the 

plant is modeled as two individual joints, Gp1 and Gp2, each with their own model 
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parameters. The motor model is the same simple inertial model used by Smith.  

 Gp =
Gp1 0

0 Gp2

=

1

Jp1s
2
+ Bp1s

0

0
1

Jp2s
2
+ Bp2s

 (4.7) 

Where Jpi is the effective output inertia and Bpi is the effective output damping at the 

joint of the motor-link system. The effective inertia combines the link inertia with the 

output motor inertia, which is simply the motor inertia multiplied by the harmonic 

gear ratio, , obtained from [40].  

 Jpi = JLi +
2Jmi  (4.8) 

For Ranger, Jmi = 4.8 10
-4

 N-m/kg, and JLi is obtained as in section 4.2.2. 

Similarly, for the joint damping: 

 Bpi = BLi +
2Bmi  (4.9) 

For damping, it was assumed that the links had no damping, and the motor 

damping is given as Bmi = 2.3 10
-5

 Nms/rad. For both joints, the gear ratio is 101. 

Thus, the effective damping is (2.3 10
-5

) 101
2
 = 0.235 Nms/rad, and can be set to 

zero since the plant model will be dominated by the inertial term. 

4.2.4 P-D Controller 

A simple proportional-derivative controller is used for joint position tracking. 

On Ranger, gains can be set differently for each joint, although in practice they are 

currently all equal.  

The input-output motor model is adjusted to reflect how the actual motor 
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control is accomplished, shown in Figure 4.5. For instance, the P-D controller in the 

LPU accepts positions/velocities in incremental encoder counts and outputs digital 

torque counts, while the model accepts radians for input and outputs the torque in 

Newton-meters. Several conversions were needed to obtain the correct units [41]. The 

conversion factor for radians to counts is s = 43726 at the shoulder and e = 33114 at 

the elbow joint. The conversion from raw torque counts to amperes is KT = 20/4096 

and the motor constant, Ka, is 0.159 N-m/ampere. To obtain the output torque, the 

motor torque must then be multiplied by the harmonic gear ratio, which for Ranger is 

=101. Given that the LPU gains on Ranger are set to Kp = 5 and Kv = 25/64, the 

effective gains are then found to be:  

 Keff = KTKaK   (4.10) 

For the shoulder, these work out to: Kps  17000 Nm/rad and Kvs  1300 

Nms/rad, while for the elbow these values are: Kpe  12900 Nm/rad and Kve  1000 

Nms/rad. In the block diagram, the implementation is then: 

 D s( ) =
D1 s( ) 0

0 D2 s( )
=

Kvss + Kps 0

0 Kves + Kpe

 (4.11) 

MotorsMotor
FPGA

LPU

Encoders

qdes comm imotor

iactual

qactual q t( )

(radians) (torque counts)

(encoder counts) (radians)

(amps)

 

Figure 4.5: Ranger Inner Position Loop 
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4.2.5 Unmodeled Elements from Ranger Inner Loop  

Since the LPU joint controller is implemented in discrete time, some elements were 

ignored in the continuous implementation to follow. For instance, discrete position 

measurements are differenced numerically to obtain velocities and filtered digitally to 

reduce noise. In the analysis, the unfiltered actual velocity is used. The LPU 

controller also employs thresholding on raw velocities and torques in order to prevent 

register rollover. This nonlinearity is unmodeled in the analysis. In addition, gravity is 

unmodeled on Ranger. It is treated as a disturbance to the inner loop, and assumed to 

be rejected by the P-D controller, since it has been demonstrated that Ranger’s static 

and dynamic accuracy is not severely affected in 1-G [37].  

4.2.6 Manipulator Stiffness/Environment Stiffness 

There are two stiffnesses associated with the outer control loop: the 

manipulator, which can specified by the user in any direction, and the environment. 

The necessary manipulator stiffness and damping required for stable contact with 

given environment stiffness are evaluated. For the 2-DOF model, these are 

represented by: 

 Ke =
Kenv,x 0

0 Kenv,y

 (4.12) 

 K =
kx 0

0 ky
 (4.13) 

For simplicity, we will assume that the motion is in the x-direction and that 

the environment is compliant in the direction of motion only. Hence, we set Kenv,y = 0. 
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Furthermore, the arm stiffness is assumed to be the same in both directions, such that 

kx = ky. 

4.2.7 Admittance Compensator 

The compensator used is the one described in chapter 2, expanded to two 

dimensions, in, x and y. Namely, 

 C s( ) =

1

mxs
2
+ bxs

0

0
1

mys
2
+ bys

 (4.14) 

In contact mode, which is first-order, the inertial terms are set to mx = my = 0.  

4.2.8 Jacobian 

The Jacobian used is the standard tool tip Jacobian for a 2-link manipulator 

[35]. It converts joint rates into Cartesian velocities in the tool frame. Notice that the 

Jacobian is greatly influenced by the value of 2. 

 3J =
LL1 sin 2( ) 0

LL1 cos 2( ) + LL2 LL2
 (4.15) 

4.3 SISO Transfer Function Analysis 

From Figure 4.2, the inner loop transfer function is found as: 

 G = GpD 1+Gp D + Ke( )( )
1
 (4.16) 

Adding the outer loop elements, the overall SISO transfer function is then: 

 GCL = G 1+ CK( ) 1+G CKeq( )
1
 (4.17) 
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Where: 

 Keq = K + Ke  (4.18) 

The 1-DOF model essentially borrows the (1,1) elements from the 2-DOF 

model described in the previous section. Thus, for the SISO equations below, ‘k’ will 

represent the (1,1) element of the matrix ‘K’, namely, kx. Likewise, ‘b’ represents bx. 

The other elements are also written in lower case to signify that they are scalar values. 

This section explains how the shoulder joint input-output stability is analyzed for 

varying payloads, arm configurations, and environment stiffness. It is an extension of 

the work done by Smith, who previously characterized the effect of time delay, 

environment stiffness and bandwidth in the frequency domain.  

4.3.1 Procedure for Evaluating 1-DOF Stability 

The analysis assumes that the shoulder joint is in a fixed position, at 1 = 0. 

Thus the relative angle between joints depends only on the elbow joint, 2. 

Using MATLAB, the transfer function is constructed and the polynomial 

denominator is extracted. Setting the denominator equals to zero yields the 

characteristic equation, from which the Routh array can be built. The first column of 

the array is then checked to satisfy the Routh-Hurwitz stability criterion [41]. This 

criterion states that each sign change of the elements of the first column signifies an 

unstable pole that lies in the right half of the complex plane. Thus, for all poles to be 

stable, all elements of the first column of the Routh array must have the same sign. 

Expanding the transfer function obtained above: 
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Kvss + K ps( ) bs + k( )

bJ ps
3
+ Bmb + Kvsb( ) s2 + K ps + Kenv,x( )B + Kvs k + Kenv,x( ) s + K ps Kenv,x + k( )

 (4.19) 

The following Routh table can then be obtained: 

 

s3 bJm b Kenv,x + Kps( ) + KvsKeq

s2 b Bm + Kvs( ) KpsKeq

s1 b Kenv,x + Kps( ) + KvsKeq

JmKpsKeq

Bm + Kvs( )

s0 KpsKeq

(4.20) 

The Routh stability method is convenient for this analysis because it does not 

require that individual poles actually be calculated. The variable, k, b are kept 

unknown, while the environment stiffness, Ke, payload mass, mp, and elbow angle, 

2, are substituted.  Looking at the Routh table above, it is obvious that any choice of 

positive k, b will make the first, second and fourth elements of the first row positive. 

Thus, only the third element must be solved to ensure that it is positive. Solving for 

the third elements yields the following linear relations in k and b: 

 

k <
Bm + Kvs( ) Kps + Kenv,x( )
JpKps Bm + Kvs( )Kvs

b Kenv,x ,  for JpKps Bm + Kvs( )Kvs > 0

k >
Bm + Kvs( ) Kps + Kenv,x( )
JpKps Bm + Kvs( )Kvs

b Kenv,x ,  for JpKps Bm + Kvs( )Kvs < 0

 (4.21) 

It is clear that this relation directly or indirectly involves all the variables 

mentioned earlier, namely Kenv and Jm. If the first line is plotted, the area beneath it 

will represent the stiffness and damping required to maintain stability. If the second 

line is plotted, it is the area above that defines the stable range.  The denominator 

dictates whether the line will slope upward or downward.  
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-Ke
-Ke

K

B

K

B

for JpKp Bm + Kv( )Kv > 0 for JpKp Bm + Kv( )Kv < 0  

Figure 4.6: Stability Margins for both cases 

 

Evaluating the denominator with the values found earlier, it is determined that 

the necessary inertia to make the line slope upward is approximately Kv
2
/Kp, and for 

Ranger this is approximately 99 kgm
2
. This inertia is would result in a payload that 

Ranger could not support. Since Ranger’s inertia will always be lower than the 

critical value, the second scenario will always be present. This scenario does not seem 

very intuitive since it indicates that the manipulator is stable for any positive choice 

of stiffness and damping. However, as experiments would indicate, there is a 

minimum amount of damping required to stabilize a commanded stiffness.  

While this analysis shows very optimistic results, it is important to realize that 

these assume a quasi-static linear behavior, which is not the case for the general 

manipulator, as will be shown in testing. It assumes that contact is always maintained 

and that displacements are small. There are also many elements absent from this 

simplified analysis that could lead to instability in the actual controller. One such 
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element is time delay. Smith analyzed the effect of time delay on the controller and 

showed that it increased the necessary target damping for stability. It is assumed that 

this holds true, and as such this analysis is done with no time delay.  

Another important unmodeled parameter is gravity. In general it is assumed 

that the joint P-D control rejects the added disturbance of gravity. It may be worth 

noting that if the arm is neutrally buoyant, the effect of gravity is also significantly 

reduced.  

An additional unmodeled nonlinearity is force and saturation. The actuators 

have a maximum force they are capable of outputting and have certain frequencies 

that they cannot exceed. The stability analysis assumes that any amount of force can 

be supplied, infinitesimally fast. However, this is untrue in reality, and can lead to 

limit cycling. There are extra bands put on allowable torque and velocity within the 

software that can limit the response of the system. Velocities are computed and 

filtered digitally, and the force sensor can be noisy, especially due to inertia at the end 

effector. Above all this, there are unmodeled flexibilities in the drive train and in the 

links that can prompt instability, especially in an outstretched position. If the natural 

frequency of the drivetrain is excited, unwanted vibrations can be perpetuated. Lastly, 

nonlinear friction can play a major role in destabilizing this controller. Most the 

positions adjustments cross in and out of low velocity, a regime in which it is very 

difficult to characterize friction and stiction in the harmonic drives, as demonstrated 

by Guion [29] and Aksman [42].  

Despite the host of unmodeled nonlinear effects, it could still be worthwhile to 

conduct a parametric analysis of the stability, given that the link inertia was high 
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enough to produce unstable behavior for certain choices of K and B. This is 

accomplished in the following cases by increasing the payload mass to a sufficient 

value. In that case, the trends identified in the following section could still be 

pertinent.  

4.3.2 1-DOF Stability for Varying Elbow Angle 

The elbow angle plays a role in changing the inertia of the arm. Increasing the 

elbow angle brings forearm mass closer to the shoulder, thus reducing the inertia and 

increasing the stability. In Figure 4.7 the elbow angle increases from the outstretched 

position at 2 = 15
0
 to a more retracted position at 2 = 60

0
.  

 

Figure 4.7: Effect of Elbow Angle on Stability. Kenv = 25000 Nm/rad, mp = 100 kg 
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4.3.3 1-DOF Stability for Varying Payload 

The added payload also affects the inertia. As shown in equations (4.4) to 

(4.6), inertia increases with payload. The added inertia requires more damping to 

stabilize and drives the resonance frequency closer to the control bandwidth. 

 

Figure 4.8: Effect of Payload on Shoulder Joint Stability. Kenv = 25000 Nm/rad, 2 = 600 

4.3.4 1-DOF Stability for Varying Environment Stiffness 

Analyzing (4.21), we see the slope of the line that separates the region of 

stability depends heavily on the environment stiffness, as (Kp+Ke) is generally much 

larger than (Bm+Kv). For all lines of stability, -Ke is also the y-intercept. By 

increasing the environment stiffness, more damping is required to stabilize the 
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motion, but also allows high a manipulator stiffness to be specified. This is not 

necessarily beneficial, as a higher manipulator stiffness will increase the forces with 

which the manipulator impacts the environment.  

 

Figure 4.9: Effect of Environment Stiffness on Shoulder Stability. 2 = 600, mp = 200 kg  

4.3.5 1-DOF Stability with Corrective Factor 

Adding the corrective factor seen in chapter 2 changes the overall admittance 

compensator. From (2.34), we can find the equivalent compensator, Ccf(s) 

 Ccf s( ) =

C s( )
cv
Keq

1 cv
=

1
bds

cv
Keq

1 cv
=

Keq bdcvs

bdsKeq 1 cv( )
 (4.22) 

This once again demonstrates the possibility of an infinite gain, if cv is chosen 
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close to 1. For rigid contact, 
 
Keq � 1 , and thus, we can approximate:  

 Ccf s( ) =
1

bds 1 cv( )
cv

Keq 1 cv( )
1

bds 1 cv( )
=

C s( )

1 cv( )
 (4.23) 

Hence, the net effect of the corrective factor is a scalar multiplication, which 

will effectively reduce the damping by a factor of (1-cv)
-1

. This will further increase 

the damping required for stability. It appears that the effect of the corrective factor is 

akin to decreasing the system damping. Implementing this modification to the 

controller to improve performance is not worthwhile if it compromises stability. 

 

Figure 4.10: Effect of Corrective Factor. Kenv = 100 Nm/rad , 2 = 600, mp = 100 kg 
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4.4 MIMO Generalized Transfer Function Analysis 

The transfer function for the MIMO realization differs only by the inclusion of 

the Jacobian. This simple addition complicates the overall closed loop transfer 

function, by coupling the force and position conversions. Nevertheless, despite the 

inclusion of the Jacobian, results indicate that again, the manipulator is stable for all 

chosen values of K and B. For the sake of continuity from the 1-DOF case, the 

analysis is carried out for the case where the link inertia is higher than it should be, 

with the hopes of identifying relevant trends.   

In the MIMO case, the inner loop transfer function becomes: 

 G = GpD I +Gp D + JTKeJ( )( )
1
 (4.24) 

The overall closed-loop transfer function is then: 

 GCL = JG J 1 I + CK( ) I + JG J 1CKeq( )
1
 (4.25) 

Where I is the 2 2 identity matrix.  

4.4.1 Procedure for Evaluating 2-DOF Stability 

For a completely decoupled system, the closed-loop transfer function of (4.25) 

would simply be a diagonal matrix, with the diagonal elements having the same 

transfer function determined in the SISO analysis. Unfortunately the robot’s 

dynamics are coupled through the Jacobian defined in (4.15). It appears as a pre- and 

post-multiplication on the inner loop in (4.25). However, if we assume that the 

manipulator only contacts the environment axially (i.e. the x-direction, shown in 

Figure 4.3), then the analysis can be simplified, as: 
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 Ke =
Kenv,x 0

0 0
 (4.26) 

and the inner loop transfer function, G ,  is diagonal. With this assumption, when G  

is pre- and post-multiplied by the Jacobian, the (1,1) and (2,2) elements of the closed-

loop transfer function matrix to retain the same form as the SISO case, the (1,2) 

element is zero and the only coupled term is the (2,1) transfer function. Thus, the only 

new analysis need be performed on the (2,1) element.  

Analytical solutions for k vs. b are more difficult and cumbersome to handle 

in the MIMO implementation. For this reason, the 2-DOF analysis will employ a 

different technique: Contrary to using the Routh criterion, the poles for discrete 

combinations of k and b are individually computed numerically via MATLAB. Poles 

with negative real part are stable and unstable poles have positive real part. The 

system is considered stable if all the poles are stable. The plots show the stability 

boundary by separating the area with stable poles (green circles) from the unstable 

poles (red crosses). 

Once the analysis is done however, it becomes clear that the situation is 

identical to the 1-DOF case, namely that all choices of stiffness and damping result in 

a stable system. For the sake of demonstrating the trends associated with this analysis, 

a different manipulator configuration is used, namely the extended Neutral Buoyancy 

Dexterous Robot (NBDR) version, used to Hubble servicing experiments. This 

configuration is shown below. Assuming the link extensions add negligible mass, and 

the only difference is that the links have been extended to be 47 inches (1.2 m) long 

each.  
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Figure 4.11: Ranger NBDR Configuration 

 

4.4.2 2-DOF Stability for Varying Elbow Angle 

As mentioned earlier, a larger elbow angle (in flexion) reduces the arm’s 

inertia and increases the stability. It also helps to avoid the singularity at full 

extension. The arm becomes highly unstable near singularities because of the 

increased joint velocity. The inner loop controller already cannot keep up with the 

rapidly increasing velocities near singularities and the outer loop amplifies this 

disability, extending this unstable region. We can see how the stable region increases 
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with angle, away from the singularity at zero degrees, but then decreases again as the 

angle approaches another singularity at 180 degrees.  

 

Figure 4.12: Effect of Elbow Angle on Axial Stability. Kenv = 25000 N/m, mp = 15 kg 

4.4.3 2-DOF Stability for Varying Payload 

The effect of increased payload is identical to the 1-DOF case, as shown in 

Figure 4.13. Increasing the payload increases the inertia, thus requiring more damping 

for stability. The figure illustrates payloads varying from 1 to 20 kg. 
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Figure 4.13: Effect of Payload Mass on Axial Stability. Kenv = 25000 N/m, 2 = 600  

4.4.4 2-DOF Stability for Varying Environment Stiffness 

Again, the same behavior as the 1-DOF case is exhibited. High environment 

stiffness increases the damping necessary for stability with low desired stiffness. As 

for the 1-DOF case, the slope of the line defining the stability boundary is 

proportional to the environment stiffness.  In the figure, the stiffness is varied from 0 

to 25000 N/m. 
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Figure 4.14: Effect of Environment Stiffness on Axial Stability. 2 = 600, mp = 20 kg 

4.5 Bandwidth 

The controller model presented in the previous section can be used to 

determine the bandwidth of the system. Monitoring the bandwidth is important 

because Smith and Carignan determined that for high link inertia (20 N-m
2
), 

harmonic drive resonance occurred at frequencies on the order of 10 Hz. This low 

bandwidth is a limiting factor in the choice of gains, as a higher bandwidth controller 

could excite resonance frequencies, thus destabilizing the system. The effect of arm 

configuration, payload and environment stiffness can be investigated, just as in the 

previous stability analysis.  In addition, the bandwidth can be contrasted for different 
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combinations of stiffness and damping.  

In general, the larger the inertia, the lower the system bandwidth. This would 

suggest that increasing the elbow angle would result in a larger bandwidth and 

likewise for decreasing the payload mass. To verify this suggestion, the bandwidth of 

the controller is determined for fixed choice of stiffness and damping. The elbow 

angle/payload mass is then increased and using the closed-loop transfer function 

described in (4.19), the corresponding bode diagram can be plotted.  

Choosing K = 500 Nm/rad, B = 1000 Nms/rad, with zero environment 

stiffness, zero payload and increasing the elbow angle, we can see that the Bode 

diagram is pushed right with increasing elbow angle.  

Increasing 2

Increasing 2

 

Figure 4.15: Bode Plot for Increasing 2 

The corresponding bandwidths for the evaluated elbow angles are given in Table 4.2. 

The experiment can be repeated for increasing payload. Choosing a constant elbow 
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angle of 15 degrees, the resulting Bode plot is shown in Figure 4.16. 

Elbow Angle, 2 (degrees) Bandwidth (Hz) 

15 8.512 

45 9.234 

90 12.312 

150 23.296 
Table 4.2: Bandwidth for Increasing Elbow Angle 

Decreasing mp

Decreasing mp

 

Figure 4.16: Bode Plot for Decreasing mp 

The corresponding bandwidths for the evaluated payload masses are given in Table 

4.3. 

Payload Mass, mp (kg) Bandwidth (Hz) 

0 8.512 

1 8.259 

5 7.400 

15 5.954 
Table 4.3: Bandwidth for Increasing Payload 
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Finally the experiment is repeated for increasing environment stiffness. 

Choosing a constant elbow angle of 15 degrees and zero payload: 

Increasing Kenv

Increasing Kenv

 

Figure 4.17: Bode Plot for Decreasing Kenv 

The corresponding bandwidths for the evaluated environment stiffness are shown in 

Table 4.4 and indicate that contact with a stiff environment can also push the 

bandwidth higher. 

Environment Stiffness, Kenv (Nm/rad) Bandwidth (Hz) 

0 8.512 

100 10.525 

1000 27.524 

10000 193.675 
Table 4.4: Bandwidth for Increasing Payload 

Next, the bandwidth can be found for choice of K and B. With a rigid 

environment (Kenv = 10000 Nm/rad), payload mass set to zero, and the elbow angle at 

15 degrees, the bandwidth is evaluated for 4 combinations of K and B: Low 

stiffness/low damping, low stiffness/high damping, high stiffness/low damping, and 
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high stiffness/high damping. “Low” and “high” values of stiffness correspond to 1 

Nm/rad and 500 Nm/rad respectively, while “low” and “high” damping correspond to 

values of 1 Nms/rad and 1000 Nms/rad respectively. The Bode plots are shown in 

Figure 4.18 and the corresponding bandwidths are given in Table 4.5. 

 

Figure 4.18: Bode Plots for Combinations of Stiffness and Damping (rigid environment)  

Desired Stiffness, K 

(Nm/rad) 

Desired Damping, B 

(Nms/rad) 

Bandwidth (Hz) 

1 1 92204 

1 1000 92204 

500 1 247 

500 1000 194 
Table 4.5: Bandwidth for Various Stiffness and Damping with Rigid Environment 

The scenario for low environment stiffness can also be repeated. Here Kenv is 

set to 1 Nm/rad, and results are shown in Figure 4.19 and Table 4.6. 



 

99 

 

 

Figure 4.19: Bode Plots for Combinations of Stiffness and Damping (soft environment) 

Desired Stiffness, K 

(Nm/rad) 

Desired Damping, B 

(Nms/rad) 

Bandwidth (Hz) 

1 1 18.217 

1 1000 18.103 

500 1 36.275 

500 1000 8.533 
Table 4.6: Bandwidth for Various Stiffness and Damping with Rigid Environment 

Thus, when in contact with a rigid environment, the controller is inherently 

limited by its inability to administer low desired stiffness without copious amounts of 

damping. Recalling that the admittance controller commands velocities from forces, 

and inverting equation (2.15) we see that: 

 Z 1(s)
C 1 s( )

s
+
K

s

1

=
s

Bds + Kd

 (4.27) 

Thus, for low values of stiffness/damping, the admittance gain is high, 
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increasing the controller bandwidth. If this bandwidth excites resonances in the robots 

links or drive trains, instability results. Thus, for this admittance controller, care must 

be taken to ensure that sufficient damping is specified when low stiffness is 

warranted.  

4.6 Summary of Stability Boundaries 

Similar trends were observed in both the single joint and multi-DOF case, 

which is to be expected. In general, it is not the stiffness that dictates stability, but the 

damping. While a higher stiffness would produce a more accurate response, it can be 

destabilizing without sufficient damping. While positional accuracy is important, it is 

essential that the manipulator behave smoothly in contact. 

An arm configuration with larger elbow angle tends to provide more stability. 

This is due to decreased inertia, but also because it is located further from the singular 

configuration at 2 = 0
0
. However, if the elbow angle is increased too much, it 

approaches the singularity at 2 = 180
0
, also leading to instability. Notwithstanding, 

increasing elbow angle also increased the system bandwidth, which could potentially 

excite resonances. Increased payload was shown to negatively affect stability, while 

higher environment stiffness increased the amount of damping required to achieve 

low manipulator stiffness. The analysis has also shown that the possible advantages to 

using a corrective factor are negated by its inferior stability properties. 

 It may be interesting to investigate the ability of other perhaps more complex 

compensators to stabilize the controller for pertinent regions. The stiffness-damping 

model is an intuitive one, but a higher order compensator could conceivably achieve 
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better stability or performance. These other controllers could provide a better 

tradeoff. For instance, for small interaction forces in rigid contact, low manipulator 

stiffness is desired. Stability with higher manipulator stiffness would gladly be 

sacrificed if a lower stiffness could be achieved more stably. A controller that could 

schedule gains according to interaction forces could be very useful, or better yet, an 

adaptive controller.  

An important consideration to remember is that this stability analysis is only 

loosely related to manipulator performance in contact, and provides no insight into 

what manipulator stiffness and damping gains are suitable for a given task. 

Specifically, there is no information regarding the magnitude of interaction force that 

is required for stable contact. Ideally, this force should be minimized. However, to 

determine the gains that will achieve this objective, actual contact testing is required. 
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Chapter 5  

Results 

5.1  Simulation 

The stability analysis presented in Chapter 4 was limited due to the inability to 

model some of the plant nonlinearities. Two of those nonlinearities are force 

saturation and the intermittence of contact due to the manipulator being commanded 

away from the impact surface. The effect of these could be verified using a simulation 

of the plant, and setting up a model of the environment that it makes contact with. A 

1-DOF simulation of the controller was thus implemented in Simulink  to evaluate if 

the desired response would be achieved and validate the findings of the previous 

chapter. Since the results of the stability analysis were not entirely helpful for 

implementing the controller, a simulation could shed more insight into its behavior 

during contact. 

A continuous-time simulation was set up with the identical model described in 

Chapter 4. The arm configuration, payload mass and environment stiffness could also 

be varied. The arm is made to follow a trajectory consisting of a very small rotation 

about the shoulder joint. It is commanded to a rotation angle of 0.1 radians, and a 

“wall” of prescribed stiffness interferes with its path at 0.05 radians.  
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Figure 5.1: Simulated Environment 

 

Figure 5.2: SimulinkTM Inner Loop Model 
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Figure 5.3: SimulinkTM Outer Loop Model 

To determine how the manipulator would behave in contact with different 

surfaces, two values of environment stiffness are considered: compliant (250 

Nm/rad), and rigid (25000 Nm/rad). For each of these environments, the controller 

response will be plotted for different combinations of desired manipulator stiffness 

and damping. The stiffnesses used are 5 Nm/rad, and 500 Nm/rad while the damping 

used are either 1 Nms/rad or 1000 Nms/rad. The simulation should illustrate the 

effects of choosing a damping value that is too high to too low for a given stiffness. 

For the simulation the manipulator configuration consists of the elbow angle at 60 

degrees, with zero payload mass.  

5.1.1 Compliant Environment 

For a compliant environment, interaction forces should already be low 

because the contact is more forgiving. Specifying high manipulator stiffness and 

damping, the following response is obtained: 
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Figure 5.4: High K, High B Response with Compliant Environment (Kenv = 250 Nm/rad) 

Contact forces begin to increase as soon as contact is made. Since the surface 

is compliant, the manipulator continues to push into the wall, causing stiffness forces 

to increase. Damping forces are also produced due to the velocity being attenuated. 

These damping forces cease after the manipulator stops advancing, and equilibrium is 

reached at about 3 cm of compression. There are slight perturbations in the 

commanded force at the onset and offset of contact due to the abrupt transition. 

Regardless, the response is stable, although the compression is not necessarily 

desirable for more delicate tasks. Decreasing the desired stiffness can minimize this 

problem, as shown in Figure 5.5. 

 

Figure 5.5: Low K, High B Response with Compliant Environment 
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With low manipulator stiffness, the equilibrium is achieved closer to the wall 

location. Contact forces are also significantly lower, as they are proportional to the 

position error, which is reduced. However, the contact forces due to the error velocity 

remain. In addition there position errors associated with using high damping and low 

stiffness because the manipulator takes too long to return to its commanded position. 

Low stiffness and high damping thus result in a sluggish response that can be 

detrimental when positional accuracy is essential. 

Choosing a small stiffness and damping can reduce forces overall. This is 

illustrated in Figure 5.6.  

 

Figure 5.6: Low K, Low B Response with Compliant Environment 

In this case, sensed contact forces are low, position tracking is good, but 

requires relatively high commanded torque with fast switching when contact is made 

and released. This high frequency switching might not be attainable by a real motor 

and could lead to instability. Using a higher value of damping could be beneficial as 

was illustrated in Figure 5.5. The tradeoff in this scenario is less force switching, but 

higher forces due to the velocity error, as well as positional inaccuracies. A 

compromise could be achieved by decreasing the damping to 20 Nms/rad, as in 
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Figure 5.7. 

 

Figure 5.7: Low K, Higher B Response with Compliant Environment 

The plots illustrate lower sensed forces, lower commanded forces and 

satisfactory position tracking. It is important to decrease the magnitude and frequency 

of position adjustments, as these can lead to instability, especially with a rigid 

environment that is not very forgiving to contact. 

5.1.2 Rigid Environment  

Interaction forces with a rigid environment are expected to be higher. A high 

manipulator stiffness is thus undesirable, which is in accordance with Spong’s duality 

principle from Chapter 2. The response with high stiffness and low damping is shown 

in Figure 5.8. 



 

108 

 

 

Figure 5.8: High K, Low B Response with Rigid Environment (Kenv = 25000Nm/rad) 

Completely undesirable behavior occurs, where absurdly high joint torques 

are commanded and sensed, and the position response is extremely unstable. A real 

manipulator motor would not be capable of handling this load. More damping can be 

used to stabilize the response, as shown in Figure 5.9.  

 

Figure 5.9: High K, High B Response with Rigid Environment 

The behavior is much more acceptable, since it is stable. Observe that for the 

rigid environment, the wall is not compressed, and the output position cannot move 

past 0.05 rad. Otherwise, the behavior is similar to the compliant surface. There is a 

component of force due to damping which ceases with velocity, and a leftover 

component from the stiffness. The contact forces encountered are still relatively high 
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but can be reduced by decreasing the desired stiffness. The consequent response is 

shown in Figure 5.10. 

 

Figure 5.10: Low K, High B Response with Rigid Environment 

Forces during sustained contact are significantly lower in this case. Damping 

forces during motion still remain, and the positional inaccuracy is apparent again. A 

better compromise could be achieved by reducing the damping, although Figure 5.11 

depicts what could happen if the damping is too low with a rigid environment. 

 

 Figure 5.11: Low K, Low B Response with Rigid Environment 

When damping is too low, the manipulator begins to oscillate about the 

contact point. Although the motion is bounded, a closer look at the forces necessary 

to maintain this motion reveals that joint torques are extremely elevated and would 
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likely saturate a real motor. 

5.1.3 Time Delay 

A time delay was added to the model to determine its effect. A delay of 10 ms 

was tested, as it was slightly more than one period of the control loop (which runs at 

125 Hz). The time delay definitely affected the stability of the system with low 

damping, but hardly any difference is noticed when sufficient damping is used. This 

reconfirms Smith’s results that increased time delay increases the damping required 

for stability. 

 

Figure 5.12: Response with Rigid Environment and Time Delay 

5.1.4 Force Saturation 

The simulation is useful because the effect of force saturation can be studied.  

Ranger’s shoulder joint motor has a maximum torque of 163 Nm. Including this 

threshold in the simulation yields the following results, using the same parameters as 

those in Figure 5.11.  
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Figure 5.13: Response with Rigid Environment and Torque Saturation 

 

The response becomes highly unstable because the motor cannot supply 

enough torque to quickly track the modified position command.  The manipulator 

keeps bouncing off the environment at full force, which is another undesirable 

behavior.  

It should be noted that rigid contact simulations are not easily solved and the 

output of the simulation depends heavily on the solution method used. In all the 

above simulations, the default variable-step Runge-Kutta integration method (ode45) 

was used. There are methods more adept at solving stiff problems and these were 

attempted, with some giving similar results (with variations in the magnitude/period 

of oscillation) and some giving wildly unintuitive results. Thus, it should be stated 
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that the results shown above merely identify behavioral trends one could expect from 

the system and should not be interpreted as being an accurate prediction of actual 

behavior in rigid contact. More detailed analysis into rigid contact simulation with 

this controller would certainly be of value.   

Despite its limitations in rigid contact, the simulation has provides useful 

insight into the expected response of the manipulator in one direction of contact. It 

has shown the negative effects of choosing inappropriate manipulator admittance and 

that appropriate gains may vary for different environments.  Proper gain selection is a 

matter of tuning for the given environment parameters. Similar behavior should be 

observed in actual contact testing with Ranger.  

5.2  Ranger 1-D Test Results 

Contact stability is investigated in one direction, as outlined in Chapter 3. The 

starting position for the manipulator has the shoulder roll (joint 1) at roughly 90 

degrees and the elbow pitch (joint 4) at 90 degrees. The bulk forward motion of the 

manipulator involves small rotations at both of those joints, and only insignificant 

adjustments at the other positional joints (2 and 3, namely shoulder pitch and elbow 

roll respectively). At this stage, Ranger is only capable of running the admittance 

controller under resolved rate control, and not during a Cartesian trajectory. Thus, the 

“paths” are specified manually, with constant velocity motions along a Cartesian 

direction. These are specified in the Cartesian rate graphical user interface (GUI) 

window of Ranger’s control station, shown in Figure 5.14. In 1-D, the manipulator is 

brought into contact with the environment at a constant forward velocity, which is 
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maintained for a short while after contact is made. The velocity is then reversed and 

the manipulator pulls away. This is sufficient to demonstrate compliance because for 

a constant forward velocity, response will be identical. Desired stiffness and damping 

are set via the admittance control GUI on Ranger’s control station. The admittance 

parameters can be specified in any direction, as shown in Figure 5.14. To determine 

the stable range, the manipulator stiffness is decreased until slight instability occurs. 

It would be infinitely time consuming to experimentally determine the entire range of 

stable gains and out of the scope of this research. It is more appropriate to identify 

stable manipulator gains that satisfy a goal. For delicate manipulator tasks, this goal is 

to minimize the interaction force between the manipulator and the environment. The 

desired stiffness dictates the interaction force at steady-state, and thus the objective is 

to determine which values of damping that allow stable contact with manipulator 

stiffness set as close to zero as possible. The effect of different approach velocities is 

investigated.  

 

Figure 5.14: Cartesian Rate (left) and Admittance Control (right) GUI Window  

 



 

114 

 

5.2.1 Springboard 

With a compliant surface, behavior should be similar to the simulated cases. 

According to Spong’s duality principle this capacitive/resistive environment is best 

contacted with an inertial manipulator, but can accommodate capacitive/resistive 

impedances as well. Due to the compliance, lower values of damping should still 

produce stable behavior, and higher manipulator stiffness can also be specified, with 

less impact force on the surface. For the following cases the manipulator stiffness 

chosen to be less than the springboard stiffness (of 7.52 kN/m). This is done to 

minimize compression, since there are only 2 cm of travel until the springs bottom 

out. The first case shown in Figure 5.15 illustrates the response with a stiffness of 500 

N/m can be stabilized with damping at or above 500 Ns/m. The plot indicates 

behavior similar to that seen in the simulation, with damping forces of approximately 

5 N, proportional to velocity when moving at 0.01 m/s, and stiffness forces increasing 

at 5 N/cm, proportionally to the position error, as expected. The plot also 

demonstrates how noisy the force measurements can be, especially at the contact 

transition. Discontinuous variations when no load is applied come from the force 

deadbanding, which is set at 1 N. 

The stiffness is then decreased to 100 N/m, and the damping was raised to 

1000 Ns/m for stability. Approach velocities of 1 cm/s, and 2 cm/s were then 

investigated, with the results shown in Figures 5.16-5.17. These cases illustrate 

behavior inherent to being at the limit of stability. There is a small chatter at 1 cm/s, 

made apparent by the variations in force at 9 and 12 seconds. The chatter is much 
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more visible at 2 cm/s between 5 and 9 seconds where there is a very high variation in 

contact force. 

 

Figure 5.15: Response for K = 500 N/m, B = 500 Ns/m on Compliant Surface 

 

 

Figure 5.16: Response for K = 100 N/m, B = 1000 Ns/m, V = 1 cm/s on Compliant Surface 
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Figure 5.17: Response for K = 100 N/m, B = 1000 Ns/m, V = 2 cm/s on Compliant Surface 

To minimize steady-state force, the stiffness is reduced again, to 50 N/m and 

then to 5 N/m in Figures 5.18 and 5.19 respectively. To cope with instability, the 

damping is raised to 1500 Ns/m. It is obvious that the higher damping value causes 

high transient forces due to velocity error, which is especially apparent in Figure 5.18 

where the manipulator moves at 2 cm/s, causing the forces to exceed 30 N. Another 

undesirable effect is the large position error present at the end of the run. When 

unloaded at a small stiffness and high damping, the manipulator will sluggishly creep 

back to its commanded position. This can be problematic where accurate positioning 

is paramount.  
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Figure 5.18: Response for K = 50 N/m, B = 1500 Ns/m, V = 1 cm/s on Compliant Surface 

 

Figure 5.19: Response for K = 5 N/m, B = 1500 Ns/m, V = 2 cm/s on Compliant Surface 
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5.2.2 1-DOF Gain Switching 

In the interest of investigating whether abrupt gain switching could be 

accomplished stably with this admittance controller, a preliminary test was carried 

out. The manipulator was brought to contact the springboard while in resolved rate 

mode with the admittance loop turned off.  After contact was established and the 

springboard wall compressed, the admittance controller was switched on with a 

stiffness of 5 N/m and a damping of 2000 Ns/m. The corresponding response is 

shown in Figure 5.20. Damping was intentionally set high to slow down and stabilize 

the response. Results were promising, as the manipulator sprung back smoothly as the 

springboard stiffness dominated the low manipulator stiffness. This result indicates 

that a gain-switching controller could be attempted to improve performance on tasks 

that require different manipulator admittances at different times, for instance the peg-

in-hole task that will be tested in Section 5.4.  

 

Figure 5.20: Gain Switching from Rigid to K = 5 N/m 
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5.2.3 Foam 

Another material Ranger might come into contact with is foam that could be 

used to render a heavy object neutrally buoyant in the SSL tank. Contact experiments 

are repeated at 1 cm/s, shown in Figures 5.22-5.25. Since foam is a more delicate 

surface, as shown by the indentations apparent in Figure 5.21, the stiffness is set low 

(5 N/m) to minimize steady-state contact force. Damping begins high (1000 Ns/m) 

and then is reduced until instability occurs. The minimum damping for stability is 

lower than the springboard, at 425 Ns/m. Note the chatter occurring when the 

damping is set to 300 Ns/m. The drop in sensed force is noticeable as the damping is 

reduced, save for the case with chatter. 

 

Figure 5.21: Contact Experiment with Foam 
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Figure 5.22: Response for K = 5 N/m, B = 1000 Ns/m, V = 1 cm/s on Foam 

 

Figure 5.23: Response for K = 5 N/m, B = 750 Ns/m, V = 1 cm/s on Foam 
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Figure 5.24: Response for K = 5 N/m, B = 425 Ns/m, V = 1 cm/s on Foam 

 

Figure 5.25: Unstable Response for K = 5 N/m, B = 300 Ns/m, V = 1 cm/s on Foam 
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5.2.4 Rigid Surface 

Contact tasks with compliant surfaces are a small subset of Ranger’s abilities. 

In general, Ranger interacts with more rigid space structures. In contact with non-

forgiving environments, forces can build up quickly using position-control alone, as 

illustrated in Figure 5.26. If the manipulator were to continue moving forward in this 

scenario, damage would be done to the robot and/or contacted surface. Clearly, 

smaller manipulator stiffness would be preferable in rigid contact. This section will 

investigate if stable contact with low manipulator stiffness can be made, and evaluate 

the improvement in contact forces over stiff resolved rate control.  

 

Figure 5.26: Manipulator Contacting Rigid Surface 

With the admittance control running, a significant reduction in contact force 

occurs. Figures 5.27-5.30 illustrate behavior with decreasing manipulator stiffness. 
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Manipulator damping was also set high to prevent unstable chatter that could be 

particularly damaging with rigid contact. The plots illustrate how the contact force 

clearly contains two components: Static force, proportional to the desired stiffness 

and position error, and a transient force, proportional to the desired damping and the 

velocity error. 

 Kd xcom x( ) + Bd vcom v( ) = F  (5.1) 

For the high stiffness case (Figure 5.27), the force increases more dramatically 

as the position error grows. Once the commanded velocity is zero, only the stiffness 

component of the force remains. The position error at that point is 0.044 m. 

Multiplying by the desired stiffness of 500 N/m, a force of roughly 22 N is expected, 

and delivered. For the low stiffness case (Figure 5.30), the damping term dominates 

and the transient force is level. The expected force from the velocity error of 0.01 

cm/s multiplied by the damping of 1500 Ns/m is 15 N, which corresponds to the 

measured force. Once forward motion ceases, the contact force falls to near-zero 

quickly, due to the low desired stiffness.  

Again, these results indicate that low stiffness can be specified provided that 

enough damping is supplied. However, they also confirm the tradeoff in positional 

accuracy seen in the simulation. This occurs because when the manipulator returns to 

free-space under admittance control, no force is felt and Equation (5.1) can be set to 

zero. 
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Figure 5.27: Response for K = 500 N/m, B = 1000 Ns/m, V = 1 cm/s on Rigid Surface 

 

Figure 5.28: Response for K = 100 N/m, B = 1000 Ns/m, V = 1 cm/s on Rigid Surface 
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Figure 5.29: Response for K = 100 N/m, B = 1500 Ns/m, V = 1 cm/s on Rigid Surface 

 

Figure 5.30: Response for K = 10 N/m, B = 1500 Ns/m, V = 1 cm/s on Rigid Surface 
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Then solving for the velocity with v0 = 0, we obtain 

 v =
Kdes

Bdes
xcom x( )  (5.2) 

Hence, when the commanded velocity is zero, the actual manipulator velocity in free 

space is proportional to the stiffness/damping ratio, and decreases as the manipulator 

approaches its commanded position. For low stiffness/high damping, the manipulator 

will creep back slowly. At high stiffness/damping ratio, the manipulator will return 

quickly. This is seen clearly when comparing the free-space responses in Figures 5.27 

and 5.30. 

5.2.5 Steady-State Force Error 

In rigid contact, it is clear that the controller is successfully delivering the 

commanded impedance at steady state. Equation 2.9 showed that impedance and 

force are related through velocity. At constant velocity (steady-state), the impedance 

is proportional to the applied force. At zero commanded velocity, the impedance 

forces should be proportional to the position error.  

 Fss = xcom x( )Kdes  (5.3) 

At nonzero commanded velocity, applied forces are expected to have an 

additional component that is proportional to the velocity error. Since in rigid contact, 

the tool tip velocity is held at zero, the velocity error is equal to the commanded 

velocity. The expected steady-state force is thus:  

 Fadm = vcomBdes + xcom x( )Kdes  (5.4)  

For the rigid cases above these can be calculated and compared to the actual 
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sensed force output. An error can thus be calculated as: 

 Eadm (%) =
Fadm Fact
Fadm

= 1
Fact

vcomBdes + xcom x( )Kdes

100%  (5.5) 

The average steady-state force error in contact over all the rigid contact runs 

was less than 11%. It was determined by averaging the force error, during only the 

periods where contact was made (i.e. force readings were nonzero) for 5 runs. The 

error in general can be attributed to the noisy force readings from the sensor, 

intermittent contact from vibrations, and the larger oscillatory transient behavior 

during contact initiation and separation. The matching between desired and actual 

admittance force during contact can be seen in Figure 5.31 for the cases of Figures 

5.27 and 5.30 respectively.  

 

Figure 5.31: Desired Force vs. Actual Force 

 

5.3  Ranger 2-D Test Results 

Testing was then expanded to include lateral motion as well. After axial 

contact is made, the tool-tip is moved in one of the perpendicular directions. Lateral 
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forces and response will be plotted. 

5.3.1 Springboard 

The springboard is made from glossy plastic, as well as the tool tip, so lateral 

friction will be lowest in this case. The case without compliance is shown first, 

followed by the lateral response without low stiffness and higher stiffness, and finally 

a response with reduced friction by using a roller-bearing tool tip. With no 

compliance, axial forces and even lateral forces increase rapidly, especially if there is 

friction impeding the lateral motion. This is seen in Figure 5.32. However, choosing a 

low axial stiffness can alleviate the frictional force by decreasing the normal force 

applied to the surface, as shown in Figure 5.33. By eliminating friction via the roller 

bearing, Figure 5.34 illustrates how the lateral force is further reduced. In general if 

the surface is not smooth, the lateral stiffness should be chosen high enough so that 

the opposing friction force does not cause the tool tip to get “caught”. Figure 5.35 

illustrates how the position error can be larger with lower stiffness.  
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Figure 5.32: 2-DOF Contact with No Compliance 
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Figure 5.33: 2-DOF Contact with K = 500 N/m, B = 1000 Ns/m, V = 1cm/s 
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Figure 5.34: 2-DOF Contact on Roller Bearing. K = 500 N/m, B = 1500 Ns/m, V = 1cm/s 
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Figure 5.35: Lateral Contact with Lower Lateral stiffness.  

5.3.2 Rigid Metal 

Similar results are seen when the contact surface used was a rigid aluminum 

plate. The trajectory followed for this test involved a back-and-forth motion. Low 

axial stiffness was used so that the normal force would be minimized. Figure 5.37 

illustrates how the surface friction causes lateral forces, and how these are relieved 

with the roller bearing tip.  

To investigate the effect of surface roughness, the aluminum plate is replaced 

by a steel plate with holes machined at 1/2” intervals. In general, the manipulator is 

capable of traversing the bumpy surface without instability, provided the axial 

damping is set high enough so that oscillation from the uneven surface is attenuated, 

as shown in Figure 5.38. For this case, a damping of 2000 Ns/m was chosen.  
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Figure 5.36: Aluminum Plate/Steel Plate with holes 

 

Figure 5.37: 2-DOF Contact with (right) and without (left) Reduced Friction 
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Figure 5.38: 2-DOF Contact on Bumpy Surface  
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5.4  Ranger Peg-in-Hole Test Results  

Qualitative peg-in-hole tests are conducted to prove that they can be 

successfully accomplished. The trajectory followed for the peg-in-hole task is 

identical to the 2-DOF task, except with a hole at the end of the lateral motion. With 

the manipulator pushing axially, the peg is moved toward the hole. Once aligned, the 

peg should move forward and insert itself, as the resistance is removed. A peg-in-hole 

task is first accomplished with only lateral compliance, and then rotational 

compliance is added.  

Figure 5.39 shows the peg-in-hole behavior, with low lateral and axial 

stiffness so as to minimize lateral force and facilitate alignment during insertion. 

First, the manipulator makes axial contact with the surface, and then moves laterally 

while still in contact until “interrupted” by the hole. Figure 5.39 depicts the behavior 

of the manipulator in each phase of motion. During lateral motion, lateral forces 

increase due to friction from the wooden surface. When the hole is “located”, both the 

axial and lateral forces drop to zero. However, the lateral forces soon increase again 

because the commanded lateral velocity is still 0.01 m/s, resulting in damping forces 

of 15 N. These persist until the commanded velocity is set to zero. The compliance in 

the lateral direction allows the peg to remain aligned with low forces during insertion. 

The axial force oscillations about zero are due to sensor noise and the force deadband, 

which is set at 2 N.  

 



 

136 

 

Axial Motion

Lateral Motion
Insertion

Moving Contact Peg Inserted

 

Figure 5.39: Peg In Hole with only Lateral Stiffness 

Figure 5.40 then shows the case with the rotational compliance turned on. The 

rotational damping can be set lower because the link inertia in the wrist is low and the 

links are stiffer since they are short and compact. Lower rotational damping can help 

with orientation, but if the damping is set too low, the manipulator can start “getting 

away” and possibly drift into a joint limit or possibly a singularity, destabilizing the 

admittance controller. It is suggested that no less than 50 Nms/rad be used. The figure 

shows high axial forces until the hole is first “found” just before 22 seconds. At this 
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instant, both lateral and axial forces are momentarily zero, indicating a free-space 

motion. However, because the entry rate is slow, the peg continues to yaw and move 

laterally while sitting in the hole until 32 seconds, where it is manually commanded 

back toward it.  At the 48-second mark, the hole is located again, and this time the 

peg is inserted after which the peg enters and then retracts. Lateral forces increase 

after the hole is found, indicating that the manipulator is still pushing sideways, until 

56 seconds. 

 

Figure 5.40: Peg In Hole with Rotational Compliance 

The peg-in-hole problem is characterized by its natural and artificial 

constraints. As the peg moves toward the board, high axial stiffness is desirable. As 

impact is made, low axial stiffness is preferable. Ideally the lateral stiffness should be 
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high when traversing the board laterally, but as the hole encountered, high axial 

stiffness and low lateral stiffness is desired. The problem could be solved with 

appropriate gain scheduling/switching, or an adaptive control strategy.  

5.5  Summary and Discussion 

In general the results are promising, showing that the admittance controller 

can be used for successful completion of contact tasks, provided that the damping is 

carefully selected to achieve stability. For rigid contact at a desired stiffness of up to 

500 N/m, a damping of 1500 Ns/m is suggested, provided the manipulator tool tip 

travels at under 2 cm/s. Very low manipulator stiffness can be achieved in this case. 

For compliant surfaces, such as foam, the damping can be chosen lower for the same 

stiffness. For motion involving two degrees of freedom, a low axial stiffness may be 

desirable so that axial forces are low and lateral forces due to friction are reduced. For 

a peg-in-hole task, using rotational compliance is beneficial for alignment, but can be 

difficult to control if the damping is too low.  

Of course the desired admittance parameters depend greatly on the nature of 

the task. To determine admittances that are suitable, it is suggested to begin with high 

damping and low stiffness first, and then gradually decrease damping and/or increase 

stiffness until the desired behavior is achieved, whether it be low impact force, or 

good position tracking.  

Unfortunately, because the testing stand was not adjustable, determining the 

effect of arm configuration, as shown in Chapter 4 was not a possibility. Future 

testing with a more elaborate, larger test stand could allow this to be verified.  
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Results in practice though, are much different to those obtained in Chapter 4. 

The stability analysis predicts that the necessary damping for stability increases with 

desired stiffness. In experimentation, this not always true; occasionally, more 

damping is required for low stiffness. The erroneous assumption in the stability 

analysis is that the manipulator never breaks contact with the impacted surface. 

However, this is untrue, especially in the case of low commanded stiffness. With low 

commanded stiffness, the manipulator attempts to track a force that is close to zero, 

driving the modified desired position very close to the surface of the wall, illustrated 

in Figure 5.41. In practice, this leads to the manipulator breaking contact, which can 

initiate a limit cycle where the manipulator bounces off the wall, attempting to track a 

force that cycles between zero and the contact force. The contact force can start 

becoming large if oscillations occur rapidly and the manipulator accelerates rapidly to 

compensate. Adding damping slows down the response, allowing the manipulator to 

attenuate the oscillation and regain contact with the wall. This is why higher damping 

is required to maintain stability when low stiffness is desired. If a large stiffness is 

demanded then the modified commanded position will be farther into the surface than 

for a low stiffness and this problem does not arise.  

The model used in Chapter 4 assumes that contact is always maintained. Even 

if the manipulator were commanded behind the original set point, there would 

actually be a restoring force in the opposite direction, as shown in Figure 5.42. This 

might explain why the model is always stable. Of course, discretization and time 

delays compound the problem as well.  
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Figure 5.41: Low Desired Stiffness Leads to Instability 

 

Figure 5.42: Restoring Force when Contact is Maintained 



 

141 

 

Chapter 6 

Conclusions 

6.1  Summary 

This research provided a framework for determining admittance parameters 

for performing compliant tasks with a robotic. A stability analysis was developed to 

find ranges for stable stiffness and damping gains, but the predictions were found to 

be inaccurate due to the over-simplified model. The model did not fully characterize 

the nonlinear problems associated with the transition from free space to contact. For 

Ranger, important effects such as joint friction, link flexibility, force saturation, 

sensor noise and intermittent contact were not included in the stability model. These 

contribute to actual behavior that is less stable than the analysis forecasts.  

The stability analysis did however give useful insight into the effect of inertia, 

payload mass and joint position on stability. It revealed that unstable behavior could 

occur in the vicinity of singularities. The analysis also dismissed the use of the 

corrective factors introduced by Pelletier and Doyon [15], as they are akin to 

increasing the system damping. 

A simulation was created and used to acquire more insight into Ranger’s 

behavior in contact when operating with the admittance controller. It helped illustrate 

the shortcomings of the stability analysis and demonstrated what behavior could be 

expected from the robot under ideal conditions, with different combinations of 
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stiffness and damping. Tests conducted with Ranger confirmed behaviors from the 

simulation, and also exposed more inaccuracies predicted by the stability analysis. 

These experiments also demonstrated that the controller could maintain stable contact 

with compliant (springs, foam) as well as rigid (metal) environments, provided that 

enough target damping is specified. The target damping required increases with 

decreased target stiffness, and higher environment stiffness because intermittent 

contact was more likely in this case. The controller is also inherently limited to by its 

bandwidth. Low stiffness and damping increase the system bandwidth, potentially 

exciting resonances.  Examining the expected forces applied at contact revealed that 

the manipulator was delivering the target admittance. There was a clear proportional 

relationship between force and velocity via the damping and steady-state force and 

position error via the stiffness. A quick investigation also revealed that gain-switching 

was a possibility, whereby the manipulator is switched from stiff positioning in 

freespace to admittance mode during contact.  

Tests also show that stable contact can be maintained while moving across a 

surface and ultimately, it was demonstrated that Ranger’s position-based admittance 

controller allows a peg-in-hole task to be accomplished successfully with lower 

overall interaction forces than with rigid position control alone. A gravity 

compensation algorithm was written so that the effect of gravity at the end effector 

could be removed from force sensor readings.  

There is a tradeoff between low manipulator stiffness and the damping 

required for stability. Lower steady-state forces are maintained, but in motion, contact 

forces are higher. This is expected because the steady-state stiffness force is 



 

143 

 

proportional to the position error and the transient damping force is proportional to 

the velocity error. Another important tradeoff is that of damping vs. speed and steady-

state error. Increasing the manipulator damping results in a more sluggish 

manipulator response. If the manipulator stiffness is specified low, then when the 

manipulator is released from contact, it will be very slow to return to its commanded 

position. If the manipulator stiffness is set to zero, it will not return to its commanded 

position, and the error will persist, and there is currently no way to re-set the 

commanded position while the admittance control is active.  

Depending on the nature of the task, a sluggish response might be desirable. 

This brings up another important, point. “Suitable” manipulator gains heavily depend 

on the goals of the tasks. The overlying assumption in the experiments presented in 

this thesis was that the force should be minimal at steady-state. However, if a task 

warrants a certain nonzero force to be applied at steady state, then the operator can 

specify a small stiffness and move the set point far past the contact surface, or a large 

stiffness and move the set point only slightly past the contact surface. If positional 

accuracy is essential, one might consider a higher stiffness, with lower damping and 

sacrificing the contact forces. If only alignment is required, and low contact forces to 

achieve this, then low stiffness with high damping may be desired.  

Nevertheless, a useful procedure for narrowing down “suitable” gains for any 

contact scenario is presented here: starting with a low stiffness and high damping, 

which is stable, and then converging to a higher stiffness and/or lower damping until 

the desired behavior is obtained.  

Compliance is a useful tool that will facilitate tasks involving alignment and 
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contact. Clearly, with enough practice and skill, a peg-in-hole insertion task can be 

performed without compliance, provided that the operator has adequate visual 

information throughout. The operator can visually line up the peg with the hole first, 

and then advance toward it. However, since Ranger only has a limited number of 

camera views available, some of which may become occluded during manipulator 

positioning, compliance can certainly help ease the task. It can also afford a less 

experienced Ranger operator some forgiveness when making contact with a rigid 

surface so that impact damage is minimized.  

6.2  Future Work 

All the tests described above are conducted with contact in the axial direction 

of the manipulator tool tip. This is only a subset of the possible configurations that 

Ranger is capable of working in. While testing impedance in all the possible arm 

orientations is outside the scope of this research, tests could be conducted to assess if 

the behavior is similar to the results already obtained, or what differences arise. 

Additional testing could be done with added mass at the end-effector to reveal if 

increasing payload mass or changing the manipulator configuration affects stability as 

described in Chapter 4. Once suitable gains have been chosen with compliance in the 

horizontal motion plane, the same gains could be tested for contact in an upward, 

downward or lateral direction. The manipulator would be made to approach a surface 

in these directions and the response would be verified for analogous responses. 

Ultimately, the manipulator would ideally be able to respond appropriately to a 

random contour. With significant additional testing, a wide range of gains could be 
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found for every possible contact scenario. While this may not be realistic, what this 

does suggest is that Ranger could potentially “rehearse” a task to determine suitable 

admittance parameters and tune to the gains for desired performance. 

The gravity compensation could be expanded to include inertial compensation 

of the payload as well. All throughout testing it was obvious that the force errors due 

to arm acceleration were nontrivial. Using mass and center of mass estimates, and 

assuming acceleration can accurately be measured, the inertial effects could also be 

calculated and subtracted from the force readings. 

At this point, there are many directions in which future research could 

significantly affect the stability, performance and practicality of the admittance 

controller. The current operating approach is not adequate for an autonomous 

situation, but workable for tele-operated use, where the operator can adjust position 

and change gains manually according to how contact is made. Ideally, the admittance 

controller should be able to run throughout a trajectory, where gain scheduling could 

be used to switch gains when different contact situations are encountered. An 

adaptive controller, like the one implemented by Guion [29], that automatically tuned 

the gains to satisfy some force/position criteria could also be very beneficial. Also, 

the admittance compensator does not necessarily need to be a mass-spring-damper 

model, but some other more abstract (less intuitive) controller that would give more 

stable results, and possibly better performance. It might be worthwhile investigating 

other compensators. Force estimation work done by Aksman [42] at the Space 

Systems Lab could be used to detect contact that does not occur at the tool tip or 

eliminate the need for a force/torque sensor. 



 

146 

 

Since Ranger was designed as a neutral buoyancy vehicle, the ultimate 

manifestation of this research would be to test the admittance controller underwater. 

This might make the manipulator more stable, as the effect of gravity is reduced and 

the viscous drag of the water might help damp out unwanted oscillation in contact. 

A human factors analysis could be an interesting study to perform. Evaluating 

to what extent compliance helps an operator achieve a task would give an indication 

as to how useful/important this controller actually is. 

It might be worth mentioning that the Ranger’s controller was certainly not 

designed with compliance in mind. The current high-gain servo loop lends itself well 

to position-based schemes, which are not necessarily the best way to achieve 

compliance. A better characterization of Ranger’s dynamics could lead to 

incorporation of model feedforward, which would allow other compliance control 

schemes to be attempted, such as impedance control or natural admittance control. 

Impedance control looks at the position/velocity errors and outputs the appropriate 

forces to apply for achieving target impedance. It would allow lower impedances to 

be specified at low bandwidth. Natural admittance control is a passivity-based scheme 

that uses to system dynamics to find the target admittance that makes the robot 

behave passively in contact, thereby improving stability. At this point however, this 

particular position-based admittance controller provides beneficial compliant 

capability to Ranger, with definite potential for improvement. 
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Appendices 

Appendix A: Gravity Compensation Testing Results 

Gravity Compensation Testing

Enrico Sabelli, 3/21/2007

Only the FTS and Plate:
Mass (kg)

Center of Mass (CoM), (m) 0 0 0.029

Trial:

Estimated EE Mass (kg)

Estimated CoM (m) [x y z] -0 -0 0.016 -0 -0 0.015 -0 -0 0.015 -0 -0 -0.15 -0.003 -0.002 -0.026

Estimated EE Mass error (%)

Estimated CoM error 0.002 0.002 0.013 0 0 0.029 0 0 0.029 0 0 0.029 0 0 0.029 0.003 0.001 0.014 0 0 0.029 0.003 0.001 0.014 0 0 0.029 0.002 0.002 0.179 0.001 0.0006 0.0394

Force Deviation from zero (N):

Position 1 (up) 0.2 0.2 0.7 0.2 0.2 1.1 0.1 0.2 0.7 0.1 0.2 0.7 0.2 0.2 0.7 0.1 0.2 0.6 0.2 0.2 0.8 0.1 0.2 0.8 0.2 0.2 0.9 0.2 0.2 0.9 0.16 0.2 0.79

Position 2 (down) 0.2 0.1 1.4 0.2 0.2 1.7 0.2 0.2 1.7 0.2 0.2 2 0.2 0.2 1.8 0.1 0.2 1.7 0.2 0.2 1.9 0.1 0.1 1.9 0.2 0.2 1.7 0.2 0.2 1.9 0.18 0.18 1.77

Position 3 (side) 1.2 0.4 0.7 1.1 0.5 0.7 1.2 0.5 0.9 1.2 0.4 0.9 1.2 0.5 1 1 0.4 1 1 0.4 0.8 1 0.5 1 1 0.5 1 1.1 0.5 1 1.1 0.46 0.9

Position 4 (45 degrees) 0.5 0.8 1.2 0.5 0.9 1.4 0.5 0.9 1.4 0.6 0.9 1.4 0.5 0.9 1.4 0.4 0.8 1.5 0.5 0.9 1.5 0.4 0.7 1.4 0.5 0.8 1.9 0.5 0.9 1.4 0.49 0.85 1.45

Torque Deviation from zero (Nm):

Position 1 (up) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Position 2 (down) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Position 3 (side) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Position 4 (45 degrees) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Max Force Deviation from zero (N): 1.2 0.8 1.4 1.1 0.9 1.7 1.2 0.9 1.7 1.2 0.9 2 1.2 0.9 1.8 1 0.8 1.7 1 0.9 1.9 1 0.7 1.9 1 0.8 1.9 1.1 0.9 1.9 1.1 0.85 1.79

Percentage of force remaining 13.67 9.112 15.95 12.53 10.25 19.36 13.67 10.25 19.36 13.67 10.25 22.78 13.67 10.25 20.5 11.39 9.112 19.36 11.39 10.25 21.64 11.39 7.973 21.64 11.39 9.112 21.64 12.53 10.25 21.64 12.529 9.6811 20.387

Max Torque Deviation from zero (Nm): 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

Percentage of trq remaining: 7.855 7.855 7.855 7.855 7.855 7.855 7.855 7.855 7.855 7.855 7.855 7.855 7.855 7.855 7.855 7.855 7.855 7.855 7.855 7.855 7.855 7.855 7.855 7.855 7.855 7.855 7.855 7.855 7.855 7.855 7.8549 7.8549 7.8549

With Cylinder:
Mass (kg)

Center of Mass (CoM), (m) 0 0 0.092

Trial:

Estimated EE Mass (kg)

Estimated CoM (m) [x y z] -0 -0 0.076 -0 -0 0.075 -0 -0 0.075 -0.004 -0.004 0.0753

Estimated EE Mass error (%)

Estimated CoM error 0.004 0.003 -0.05 0 0 0.029 0.004 0.004 -0.05 0 0 0.029 0.004 0.004 -0.05 0 0 0.029 0 0 0.029 0 0 0.029 0 0 0.029 0 0 0.029 0.0012 0.0011 0.0064

Force Deviation from zero (N):

Position 1 (up) 0.7 1.7 1 0.7 1.7 1 0.7 1.7 0.8 0.8 1.7 1 0.7 1.6 0.8 0.72 1.68 0.92

Position 2 (down) 1.2 1.4 0.4 1.2 1.2 0.4 1.3 1.2 0.2 1.2 1.2 0.2 1.3 1.3 0.4 1.24 1.26 0.32

Position 3 (side) 1.4 2.2 0.8 1.4 2.2 1 1.4 2.1 0.4 1.4 2.2 0.8 1.5 2.1 0.6 1.42 2.16 0.72

Position 4 (45 degrees) 0.8 2.5 0.4 0.8 2.4 0.8 0.8 2.3 0.3 0.6 2.4 0.5 0.9 2.4 0.4 0.78 2.4 0.48

Torque Deviation from zero (Nm):

Position 1 (up) 0.13 0.34 0.04 0.13 0.3 0.02 0.15 0.31 0.02 0.14 0.31 0.02 0.14 0.32 0.02 0.138 0.316 0.024

Position 2 (down) 0.03 0.18 0.01 0.02 0.17 0.01 0.03 0.16 0.01 0.02 0.15 0.01 0.03 0.16 0.01 0.026 0.164 0.01

Position 3 (side) 0.19 0.2 0.1 0.18 0.2 0.08 0.19 0.22 0.09 0.19 0.22 0.09 0.19 0.21 0.09 0.188 0.21 0.09

Position 4 (45 degrees) 0.06 0.22 0.04 0.09 0.23 0.07 0.07 0.22 0.08 0.07 0.23 0.08 0.09 0.23 0.08 0.076 0.226 0.07

Max Force Deviation from zero (N): 1.4 2.5 1 1.4 2.4 1 1.4 2.3 0.8 1.4 2.4 1 1.5 2.4 0.8 1.42 2.4 0.92

Percentage of force remaining 6.861 12.25 4.901 6.861 11.76 4.901 6.861 11.27 3.921 6.861 11.76 4.901 7.351 11.76 3.921 6.9591 11.762 4.5087

Max Torque Deviation from zero (Nm): 0.19 0.34 0.1 0.18 0.3 0.08 0.19 0.31 0.09 0.19 0.31 0.09 0.19 0.32 0.09 0.188 0.316 0.09

Percentage of trq remaining: 10.1 18.07 5.315 9.568 15.95 4.252 10.1 16.48 4.784 10.1 16.48 4.784 10.1 17.01 4.784 9.993 16.797 4.7839

1 2 3 4 5 6 7 8

0.796

0.895

9.944134078

9 10

0.806

100 11.62011173 100

0.791 0.796

Averages

0.79725

10.92178771

2.08

11.06145251 100 11.06145251100 100 100

1 2 3 4 5 6 7 8 9 10 Averages

1.941 1.938 1.941 1.94

6.682692308 100 6.826923077 100 100 100 6.7307692316.682692308 100 100 100
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Appendix B: CAD Drawings of Springboard Parts 
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Appendix C: CAD drawings of F/T Sensor Attachments 

 

 



 

152 

 

 

 

 



 

153 

 

 

 



 

154 

 

 



 

155 

 

Appendix D: MATLAB Code for Stability Analysis 

MATLAB Sample Code for 1-DOF Stability Analysis 

% Analytical 1-DOF stability analysis with multiple positions 
% Varying only the angle of theta2 
 
close all; 
clear all; 
clc; 
 
% ------------------------------------------------------------------------ 
% PART I: VARIABLES THAT DON'T CHANGE, OR ARE ONLY SUBSTITUTED LATER  
% ------------------------------------------------------------------------ 
% for Laplace domain: 
syms s 
 
% identity matrix: 
% I = eye(2); 
syms I H1 H2 
I = 1; 
 
% Delay 1: 
H1 = 1 % No delay 
% Delay 2: 
H2 = 1 % No delay 
 
% ----------------------------------------------------------- 
% Joint angles and link parameters  
% ----------------------------------------------------------- 
syms angles theta1 theta2 
angles = [0 15 30 45 60 90 120 150 170] %degrees 
angles = angles*3.141592654/180         %radians 
 
% trigonometry: 
syms s1 s2 s12 c1 c2 c12 
s1 = sin(theta1); 
s2 = sin(theta2); 
s12 = sin(theta1+theta2); 
c1 = cos(theta1); 
c2 = cos(theta2); 
c12 = cos(theta1+theta2); 
 
syms L_L1 L_L2 L1 L2 L3 Lp m1 m2 m3 payload 
% Link lengths: 
% For jacobian: 
% L_L1 = 1.2;    % Link1 Extended 
% L_L2 = 1.2;   % Link2 Extended 
L_L1 = 0.54;    % Actual length of link 1 
L_L2 = 0.677;   % Actual length of link 2 (to payload) 
% For inertia: 
% ----- Ranger DXR ------------- 
L1 = 0.0572;    % metres, to m1 
L2 = 0.0762;    % metres, to m2 
L3 = 0.446;     % metres, to m3 
Lp = 0.677;     % metres, to payload 
% ----- Extended Config --------- 
% L1 = 0.0572;    % metres, to m1 
% L2 = 0.0762;    % metres, to m2 
% L3 = 0.98;     % metres, to m3 
% Lp = 1.2;     % metres, to payload 
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% Link masses (for inertia calculation) 
m1 = 22.68;     % kg 
m2 = 21.90;     % kg 
m3 = 21.90;     % kg 
payload = [0 1 5 15];% kg (analysis done for varying payload) 
 
% ----------------------------------------------------------- 
% Jacobian: 
% ----------------------------------------------------------- 
 
syms J JT Jinv 
J = 1; 
JT = 1; 
Jinv = 1; 
 
% ----------------------------------------------------------- 
% P-D gains (default values from rtsx/common/src/CFG.C) 
% ----------------------------------------------------------- 
 
syms Kp Kv 
syms D1 D2 D 
K_motor = 0.159;    % motor current to Nm 
DAC = 20/4096;      % raw torque to motor current 
Counts = 43726;     % radians to counts 
Gear = 101;         % Gear ratio 
Kv = 25*Gear*Counts*DAC*K_motor/64; 
Kp = 5*Gear*Counts*DAC*K_motor; 
D1 = Kv*s + Kp; 
D2 = Kv*s + Kp; 
 
% PD Controller: 
D = D1; 
 
% ----------------------------------------------------------- 
% Impedance stiffness, inertia and damping terms  
% ----------------------------------------------------------- 
 
syms Kx Ky Bx By Mx My b k m 
syms C1 C2 C K 
Kx = k; 
Ky = k; 
Bx = b; 
By = b; 
Mx = m; 
My = m; 
 
C1 = 1/(Mx*s^2+Bx*s); 
C2 = 1/(My*s^2+By*s); 
 
% Admittance Compensator: 
C = C1; 
 
% Admittance Stiffness: 
K = Kx; 
 
% Enviroment Stiffness: 
syms Kenvir 
Kenvir = [0 100 1000 10000 25000];  
 
 
% ------------------------------------------------------------------------ 
% PART II: SETTING UP VARIABLES THAT CHANGE IN THE ANALYSIS 
% ------------------------------------------------------------------------ 
 
qstart = 2;      % The joint angle index for theta2 
qend = 9;   % The number of joint angles used (9 = maximum) 
qstep = 1; 
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estart = 5;      % The environment stiffness index 
eend = 5;   % The number of stiffnesses used (5 = maximum) 
estep = 1; 
pstart = 1;     % The payload mass index 
pend = 1;  % The number of payloads used (4 = maximum) 
pstep = 1; 
 
qnum = (qend-qstart)/qstep + 1; 
enum = (eend-estart)/estep + 1; 
pnum = (pend-pstart)/pstep + 1; 
 
iters = round(qnum*enum*pnum) 
 
% for counting iterations 
iter = 0; 
 
for q=qstart:qstep:qend 
    for e=estart:estep:eend 
        for p=pstart:pstep:pend 
 
            % ----------------------------------------------------------- 
            % Environment stiffness 
            % ----------------------------------------------------------- 
            syms Kenv Ke 
            Kenv = Kenvir(e) 
            Ke = Kenv; 
 
            % Equivalent Stiffness: 
            syms Keq 
            Keq = K + Ke; 
 
            % ----------------------------------------------------------- 
            % Motor inertia and damping terms 
            % ----------------------------------------------------------- 
             
            syms Jm Bm N 
            Jm = 4.8e-4; 
            Bm = 2.3e-5;    % From motor data sheets 
            N = 101; 
            syms L21   % Lengths used for inertia calculation 
            syms JL1 JL2 BL BL 
            syms Jp1 Jp2 Bp1 Bp2 
            syms Gp1 Gp2 
            syms mp m2eq L2eq L21 
 
            mp = payload(p); 
 
            m2eq = m2+m3+mp; 
            L2eq = (m2*L2+m3*L3+mp*Lp)/m2eq; 
            L21 = sqrt(L_L1^2 + L2eq^2 + 2*L_L1*L2eq*c2); % Law of cosines 
 
            JL1 = m1*(L1^2) + m2eq*(L21^2) 
            JL2 = m2eq*(L2eq^2); 
 
            Jp1 = Jm*(N^2)+JL1; 
            Jp2 = Jm*(N^2)+JL2;  
            Bp1 = Bm*(N^2); 
            Bp2 = 0;    
            Kp1 = 0;     
            Kp2 = 0; 
             
            Gp1 = 1/(Jp1*s^2+Bp1*s+Kp1);    % Getting theta from torque 
            Gp2 = 1/(Jp2*s^2+Bp2*s+Kp2); 
 
            % Plant model (simplified motor model) 
            syms Gp 
            %Gp = [Gp1 0;0 Gp2]; 
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            Gp = Gp1; 
 
            % Inner loop model: 
            syms Gt 
            Gt = Gp*H1*D/(I + Gp*(H1*D + JT*Ke*J)); 
            vpa(Gt) 
            fprintf('\nGt =') 
            pretty(vpa(Gt)) 
 
            % Overall Transfer function with Impedance loop: 
            syms Gx 
            Gx = J*Gt*H2*Jinv*(I + C*K)/(I + J*Gt*H2*Jinv*C*Keq); 
            vpa(Gx) 
            fprintf('\nGx =') 
            pretty(vpa(Gx)) 
 
            % With bias force: 
            syms Gf 
            Gf = J*Gt*H2*Jinv*C*(inv(I + J*Gt*H2*Jinv*C*Keq)); 
 
 
            % ------------------------------------------------------------------------ 
            % PART III: OBTAINING CHAR EQNS AND PLOTS OF STABILITY MARGINS  
            % ------------------------------------------------------------------------ 
             
            syms CharEq1 R1 q1 Eq1 K1 K1a  
            Gx = simple(Gx); 
            Gx = subs(Gx,m,0);  % m = 0, for now 
            Gx = simple(Gx); 
            if (Gx~=0) 
                [NUM1,DEN1] = numden(Gx); 
                CharEq1 = DEN1; 
                CharEq1 = subs(CharEq1,theta1,angles(1)); 
                CharEq1 = subs(CharEq1,theta2,angles(q)); % later make this angles(n) 
                CharEq1 = collect(CharEq1,s) 
                [q1,r1] = coeffs(CharEq1,s) 
                 
                polyq1 = [q1(4),q1(3),q1(2),q1(1)]; 
                syms EPS 
                RA1 = routh(polyq1,EPS) 
                Eq1 = 0; 
                Eq1 = RA1(3,1) 
                 
                K1 = solve(Eq1,k); 
                K1a = collect(expand(K1(1)),b); 
                K1a = vpa(eval(K1a)); 
                 
                figure(1); 
                if (length(K1)>1) 
                    subplot(2,1,1) 
                end 
                ezplot(K1a,[0 2000]) 
                if (iter<1) 
                    setcurve('color','green','linestyle','--'); 
                end 
                if (iter>iters-2) 
                    setcurve('color','red','linestyle','-.'); 
                end 
                title('Effect of \theta_2 on Shoulder Joint Stability') 
                xlabel('B (Nms/rad)') 
                ylabel('K (Nm/rad)') 
                hold on; 
            end           
            iter = iter +1 
        end % Payload for-loop 
    end % Stiffness for-loop 
end % Joint Angle for-loop 



 

159 

 

 

MATLAB Sample Code for 2-DOF Stability Analysis 

% ----------------------------------------------------------- 
% Joint angles and link parameters  
% ----------------------------------------------------------- 
% Setup for different angles: 
angles = [0 15 30 45 60 90 120 150 170] %degrees 
angles = angles*pi/180         %radians 
 
% trigonometry: 
 
for theta1=1:1:length(angles) 
    for theta2=1:1:length(angles) 
        s1(theta1,theta2) = sin(angles(theta1)); 
        if (s1(theta1,theta2)<1e-6) 
            s1(theta1,theta2) = 0; 
        end 
        s2(theta1,theta2) = sin(angles(theta2)); 
        if (s2(theta1,theta2)<1e-6) 
            s2(theta1,theta2) = 0; 
        end 
        s12(theta1,theta2) = sin(angles(theta1)+angles(theta2)); 
        if (s12(theta1,theta2)<1e-6) 
            s12(theta1,theta2) = 0; 
        end 
        c1(theta1,theta2) = cos(angles(theta1)); 
        if (c1(theta1,theta2)<1e-6) 
            c1(theta1,theta2) = 0; 
        end 
        c2(theta1,theta2) = cos(angles(theta2)); 
        if (c2(theta1,theta2)<1e-6) 
            c2(theta1,theta2) = 0; 
        end 
        c12(theta1,theta2) = cos(angles(theta1)+angles(theta2)); 
        if (c12(theta1,theta2)<1e-6) 
            c12(theta1,theta2) = 0; 
        end 
    end 
end 
 
% Link lengths: 
% For jacobian: 
L_L1 = 1.2;    % Extended Arm 
L_L2 = 1.2;   % Extended Arm 
% L_L1 = 0.54;    % Actual length of link 1 
% L_L2 = 0.677;   % Actual length of link 2 (to payload) 
% For inertia: 
% ------------ Extended Arm ------------ 
L1 = 0.0572;    % metres, to m1 
L2 = 0.0762;    % metres, to m2 
L3 = 0.98;     % metres, to m3 
Lp = 1.2;     % metres, to payload 
 
% ------------ RTSX Arm Config------------ 
% L1 = 0.0572;    % metres, to m1 
% L2 = 0.0762;    % metres, to m2 
% L3 = 0.446;     % metres, to m3 
% Lp = 0.677;     % metres, to payload 
 
% Link masses (for inertia calculation) 
m1 = 22.68;     % kg 
m2 = 21.90;     % kg 
m3 = 21.90;     % kg 
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payload = [1 5 10 20]; 
% payload = [60 70 80 100];% kg (analysis done for varying payload) 
 
% ----------------------------------------------------------- 
% Jacobian: 
% ----------------------------------------------------------- 
 
% use tool-tip jacobian 
 
for theta1=1:length(angles) 
    for theta2=1:length(angles) 
        J11(theta1,theta2) = L_L1*s2(theta1,theta2); 
        J12(theta1,theta2) = 0; 
        J21(theta1,theta2) = L_L1*c2(theta1,theta2)+L_L2; 
        J22(theta1,theta2) = L_L2; 
    end 
end 
 
 
% ----------------------------------------------------------- 
% P-D gains (default values from rtsx/common/src/CFG.C) 
% ----------------------------------------------------------- 
 
% used values that make the inner-loop controller stable 
 
K_motor = 0.159;    % motor current to Nm 
DAC = 20/4096;      % raw torque to motor current 
Counts_1 = 43726;     % radians to counts of shoulder 
Counts_2 = 33114;     % radians to counts of elbow 
Gear = 101;         % Gear ratio 
Kv1 = 25*Gear*Counts_1*DAC*K_motor/64; 
Kp1 = 5*Gear*Counts_1*DAC*K_motor; 
Kv2 = 25*Gear*Counts_2*DAC*K_motor/64; 
Kp2 = 5*Gear*Counts_2*DAC*K_motor; 
 
D1 = tf([Kv1 Kp1],[1]); 
D2 = tf([Kv2 Kp2],[1]); 
 
% PD Controller: 
 
D = [D1 0;0 D2]; 
 
% ----------------------------------------------------------- 
% Corrective factor:  
% ----------------------------------------------------------- 
 
% cf = 0; % Pelletier and Doyon use 0.75 
 
% for equivalent damping 
% C = C/(1-cf) 
 
 
% ------------------------------------------------------------------------ 
% PART II: SETTING UP VARIABLES THAT CHANGE IN THE ANALYSIS 
% ------------------------------------------------------------------------ 
 
qstart = 5;      % The joint angle index for theta2 
qend = 5;   % The number of joint angles used (9 = maximum) 
qstep = 1; 
estart = 1;      % The environment stiffness index 
eend = 4;   % The number of stiffnesses used (5 = maximum) 
estep = 1; 
pstart = 4;     % The payload mass index 
pend = 4;  % The number of payloads used (4 = maximum) 
pstep = 1; 
 
qnum = (qend-qstart)/qstep + 1; 
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enum = (eend-estart)/estep + 1; 
pnum = (pend-pstart)/pstep + 1; 
 
iters = round(qnum*enum*pnum) 
 
% for counting iterations 
iter = 0; 
figure(1) 
title('Region of Stability for Varying \theta_2') 
 
for q=qstart:qstep:qend 
    for e=estart:estep:eend 
        for p=pstart:pstep:pend 
            subplot(2,2,iter+1) 
            for k=1:200:1001 
                for b = 1:50:1001 
 
 
                    % ----------------------------------------------------------- 
                    % Impedance stiffness, inertia and damping terms  
                    % ----------------------------------------------------------- 
                    % (we'll want a range of these, for comparison) 
                    C1 = tf([1],[b 0]); 
                    C2 = C1; 
 
                    % Admittance Compensator: 
                    C = [C1 0;0 C2]; 
 
                    % Admittance Stiffness: 
                    K = [k 0;0 k]; 
 
                    % Enviroment Stiffness: 
                    Kenvir = [0 100 1000 10000 25000]; %Gt become unstable at Kenv = 220000 
                    Kenvir = [0 500 10000 25000] 
 
 
                    % ----------------------------------------------------------- 
                    % Environment stiffness 
                    % ----------------------------------------------------------- 
                    Kenv = Kenvir(e) 
                    Ke = [Kenv 0;0 0];  
                    %Ke = [Kenv 0;0 0]; % for x force only 
                    %Ke = [0 0;0 Kenv]; % for y force only 
 
 
                    % Equivalent Stiffness: 
                    syms Keq 
                    Keq = K + Ke; 
 
                    % ----------------------------------------------------------- 
                    % Motor inertia and damping terms 
                    % ----------------------------------------------------------- 
 
                    Jm = 4.8e-4; 
                    Bm = 2.3e-5; 
                    N = 101; 
 
                    mp = payload(p) 
 
                    m2eq = m2+m3+mp; 
                    L2eq = (m2*L2+m3*L3+mp*Lp)/m2eq; 
                    L21 = sqrt(L_L1^2 + L2eq^2 + 2*L_L1*L2eq*c2(1,q)); % Law of cosines 
 
                    JL1 = m1*(L1^2) + m2eq*(L21^2) 
                    JL2 = m2eq*(L2eq^2); 
 
                    Jp1 = Jm*(N^2)+JL1 
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                    Jp2 = Jm*(N^2)+JL2 
                    Bp1 = Bm*(N^2);    %2.3e-5;    % zero damping, as per Jenny Smith's thesis 
                    Bp2 = Bm*(N^2);    %2.3e-5;    % 2.3e-5 as per motor data sheets 
 
                    Gp1 = tf([1],[Jp1 Bp1 0]); 
                    Gp2 = tf([1],[Jp2 Bp2 0]); 
 
                    % Plant model (simplified motor model) 
                    Gp = [Gp1 0;0 Gp2]; 
 
                    % Jacobian: 
                    J = [J11(1,q) J12(1,q);J21(1,q) J22(1,q)];  
                    JT = transpose(J); 
                    Jinv = inv(J); 
 
                    I = eye(2,2); 
 
                    % Inner loop model: 
                    syms Gt 
                    Gt = Gp*D*(inv(I + Gp*(D + JT*Ke*J))); 
 
                    % Overall Transfer function with Impedance loop: 
                    syms Gx 
                    Gx = J*Gt*Jinv*(I + C*K)*(inv(I + J*Gt*Jinv*C*Keq)); 
                    poles1 = pole(Gx(2,1)); 
                    poles1 = real(poles1); 
                    hold on; 
                    for i=1:length(poles1) 
                        if (abs(poles1(i))<1e-6) 
                            poles1(i) = 0; 
                        end 
                        check_stab1 = sign(poles1(i)) 
                        if (check_stab1 == 1) 
                            plot(b,k,'rx','MarkerSize',10) 
                            break 
                        end 
                    end 
                    if (check_stab1 ~= 1) 
                        plot(b,k,'go','MarkerSize',10) 
                    end 
                end % k loop 
            end % b loop 
            iter = iter +1 
            axis([0 1001 0 1001]) 
            xlabel('B (Ns/m)') 
            ylabel('K (N/m)') 
            title(['k_e_n_v = ',num2str(Kenv),' N/m']) 
        end % Payload for loop 
    end % Stiffness for loop 
end % Joint Angle for loop 
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MATLAB Sample Code for Bandwidth Calculation 

Begins after the transfer functions are calculated in the 1-DOF stability code 

% ------------------------------------------------------------------------ 
% PART III: FINDING SYSTEM BANDWIDTH 
% ------------------------------------------------------------------------ 
 
            Gx = simple(Gx); 
            Gx = subs(Gx,m,0);  % m = 0, for now 
            Gx = subs(Gx,theta1,angles(1)); 
            Gx = subs(Gx,theta2,angles(q)); 
            Gx = simple(Gx); 
            Jp = subs(Jp1,theta2,angles(q)); 
             
            syms EqNum EqDen 
            [NUM1,DEN1] = numden(Gx); 
            EqNum = NUM1; 
            EqDen = DEN1; 
             
            index = 1; 
            figure; 
             
            for u=1:499:500 
                for v=1:999:1000 
                    numtest = Kv*b*s^2 + (Kv*k+b*Kp)*s + Kp*k; 
                    dentest = b*Jp*s^3 + Kv*b*s^2 + ((Kp+Ke)*b+Kv*(k+Ke))*s + Kp*(K+Ke); 
                    numtest = subs(numtest,k,u); 
                    numtest = subs(numtest,b,v); 
                    dentest = subs(dentest,k,u); 
                    dentest = subs(dentest,b,v); 
                    numtest = sym2poly(numtest); 
                    dentest = sym2poly(dentest); 
                    sys = tf(numtest,dentest); 
                    subplot(2,2,index) 
                    bodemag(sys); 
                    title(['Bode Diagram for K = ',num2str(u),' Nm/rad, B = ',num2str(v),' Nms/rad'])  
                    hold on; 
                    bw(iter,index) = bandwidth(sys)/2/pi; 
                    index = index +1; 
                end 

end  
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